LLM入門


合計 20 件の記事があります。 現在 1 ページ中の 1 ページ目です。

9.2 LLMの実装に向けたリソースと学習の提案 - 効果的なツールとコースの活用

LLM(大規模言語モデル)の実装に必要なリソースや学習方法を紹介します。オープンソースフレームワーク、クラウドプラットフォーム、データセット、オンラインコースなど、実践的なアプローチに必要なリソースを提供します。
2024-10-27

9.0 LLMとエンジニアが向き合うべきポイント - モデル最適化、バイアス対応、倫理的責任

LLM(大規模言語モデル)を扱うエンジニアが向き合うべき重要なポイントを解説します。モデルの最適化やバイアス軽減、データプライバシーの保護、倫理的責任など、LLM開発における重要な側面について考察します。
2024-10-25

8.2 LLMにおけるバイアスと倫理的課題 - 公平で信頼性の高いAIの実現に向けた取り組み

LLM(大規模言語モデル)が抱えるバイアスと倫理的課題について解説し、データバイアス軽減の技術や説明可能なAI(XAI)の役割を紹介します。より公平で信頼性の高いAIシステムを構築するための今後の展望も説明します。
2024-10-24

7.0 LLMの具体的な応用例 - 自然言語生成、機械翻訳、医療、法律、教育分野の利用事例

LLM(大規模言語モデル)は、自然言語生成、機械翻訳、医療、法律、教育など、様々な分野で幅広く応用されています。具体的な応用事例を通じて、LLMの現実世界での活用方法を紹介します。
2024-10-19

5.2 勾配降下法とバックプロパゲーション - LLMのトレーニング手法の解説

勾配降下法とバックプロパゲーションは、LLM(大規模言語モデル)のトレーニングにおける重要な手法です。損失関数の勾配を効率的に計算し、モデルのパラメータを最適化するプロセスを詳しく解説します。
2024-10-15

5.1 損失関数の重要性 - LLMにおけるモデル最適化のカギ

損失関数は、モデルの最適化において重要な役割を果たし、LLMの精度向上に寄与します。クロスエントロピー損失関数や過学習、学習不足の検出に役立つ損失関数の仕組みを解説します。
2024-10-14

5.0 勾配降下法とモデル最適化 - LLMのトレーニング手法解説

勾配降下法は、LLM(大規模言語モデル)のトレーニングにおける重要な最適化手法です。クロスエントロピー損失やミニバッチ勾配降下法、勾配クリッピングを使ってモデルの精度を向上させる仕組みを解説します。
2024-10-13

3.1 確率論と統計 - LLMにおける言語生成と予測の基礎

確率論と統計は、LLMの言語生成や次の単語の予測において重要な役割を果たします。n-gramモデル、マルコフ連鎖、最大尤度推定(MLE)など、LLMの予測精度を向上させる数理的手法について解説します。
2024-10-09

7.5 LLMの法的規制とガバナンス:プライバシー保護と倫理対応の重要性

大規模言語モデル(LLM)の法的規制とガバナンスについて解説。プライバシー保護やデータ規制、ガバナンス体制の構築、各国の法的動向に対応したLLM運用のポイントを紹介します。
2024-10-02

7.4 LLMにおけるデータ倫理とバイアス問題 | 公平性を高めるための対策

LLM(大規模言語モデル)のデータ倫理とバイアスの問題について解説。バイアスの発生要因とその影響、バイアス軽減のための対策、法的・社会的な影響についてエンジニア向けに詳述します。
2024-10-01

7.0 LLMの未来の展望と課題 | モデル進化、省リソース、マルチモーダル統合

LLM(大規模言語モデル)の未来の発展と課題をエンジニア向けに解説。モデルの拡大、省リソーストレーニング、マルチモーダルモデルとの統合、データ倫理、法的規制など、技術的・倫理的な課題を詳述します。
2024-09-27

5.1 LLMにおけるバイアスと倫理的問題 | リスクと対策の解説

LLM(大規模言語モデル)におけるバイアスや倫理的問題をエンジニア向けに解説。バイアスが発生する要因や具体的な倫理的リスク、バイアスを軽減するための対策と指針について詳述します。
2024-09-21

5.0 LLMを使う際の注意点 | バイアス、リソース、リアルタイム処理の課題

LLM(大規模言語モデル)を使用する際の注意点についてエンジニア向けに解説。バイアスや倫理的問題、計算リソースとコスト、リアルタイムでの使用における技術的な課題について詳述。
2024-09-20

4.4 LLMによるコード生成 | 生産性を高める自動コード生成とその応用

LLM(大規模言語モデル)を活用したコード生成の仕組みをエンジニア向けに解説。テンプレートコードや関数の自動生成、テストコードの生成など、開発現場での応用例とともに、GitHub Copilotなどの事例を紹介。
2024-09-19

4.3 LLMによる翻訳と要約 | 高度な文脈理解による効率的な情報処理

LLM(大規模言語モデル)を活用した翻訳と要約の仕組みをエンジニア向けに解説。トランスフォーマーモデルを活用し、翻訳と要約がどのように実現されるか、具体的な応用例と共に紹介。
2024-09-18

4.2 LLMによる質問応答システム | 高精度な回答生成とその応用例

LLM(大規模言語モデル)を活用した質問応答システムの仕組みと応用例をエンジニア向けに解説。カスタマーサポート、FAQ、検索エンジン強化など、様々な分野での実際の使用ケースを紹介。
2024-09-17

4.0 LLMの応用例 | テキスト生成、質問応答、翻訳、コード生成での活用

LLM(大規模言語モデル)の応用例をエンジニア向けに解説。テキスト生成、質問応答システム、翻訳、要約、コード生成など、LLMが様々な分野でどのように活用されているかを詳述します。
2024-09-15

3.2 LLMのトレーニングステップ | フォワードプロパゲーションとバックプロパゲーションの解説

LLM(大規模言語モデル)のトレーニングプロセスをエンジニア向けに解説。初期化からフォワードプロパゲーション、ロス計算、バックプロパゲーションまで、トレーニングの主要なステップと学習率やハイパーパラメータ調整の重要性について説明します。
2024-09-13

3.0 LLMのトレーニング方法 | データセット、前処理、ファインチューニングの解説

LLM(大規模言語モデル)のトレーニング方法をエンジニア向けに解説。データセットの前処理、トレーニングのステップ、ファインチューニングやトランスファーラーニングを活用した効率的なモデル構築の方法を詳述。
2024-09-11

1.1 LLMとは何か: 定義と概要 | 大規模言語モデルの基本をエンジニア向けに解説

LLM(大規模言語モデル)の定義と概要をエンジニア向けに解説。パラメータの役割、事前学習とファインチューニング、自己教師あり学習の重要性など、LLMの基本を技術的に詳しく説明します。
2024-09-03