LLM入門
合計 73 件の記事があります。
現在 2 ページ中の 1 ページ目です。

W3CのAI Context仕様とは?|MCP入門 7.3|文脈の国際標準化とMCPの役割
AIの意思決定や会話文脈を明示的に設計するため、W3CではAI Context仕様の標準化が進んでいます。本記事ではその動向と、MCPとの親和性や将来のマッピング可能性について詳しく解説します。
2025-04-04

OpenAI GPT、Claude、Geminiの文脈処理とは?|MCP入門 7.1|各社LLMの設計思想とMCPの位置づけ
各社LLMは文脈や状態の扱い方に独自のアプローチを持っています。本記事ではOpenAI GPTのSystem MessageとMemory API、Claudeの自己内省型設計、Geminiのマルチモーダル連携を比較し、MCPが果たす中立的な役割を明らかにします。
2025-04-02

MCPの未来と標準化への道とは?|MCP入門 7.0|AI文脈設計の次なるステージとグローバル接続性
Model Context Protocol(MCP)はAIの文脈理解と再現性を支える設計思想です。最終章では、各社LLMとの親和性、Memory API連携、W3C標準化、人格と役割の制御まで、MCPの未来像を展望します。
2025-04-01

JSONスキーマによる状態制御の工夫とは?|MCP入門 6.4|一貫性あるAI応答を実現する構造的設計
生成AIの応答を安定化させるには、“状態”の明示が不可欠です。本記事では、MCP設計におけるJSONスキーマの活用方法を詳しく解説し、意図や画面状況をモデルに正しく伝える設計戦略を紹介します。
2025-03-31

ツール活用 / マルチエージェントシステムでのMCP適用例とは?|MCP入門 5.4|複数エージェントとツールを統合する文脈設計
ツール活用やマルチエージェント設計では、AIが状態や目的を共有しながら協調する必要があります。MCPを活用することで、共通の文脈管理・状態同期・出力整理を実現し、複雑な連携を安定運用できる方法を解説します。
2025-03-26

ドキュメントベース質問応答(RAG)でのContext設計とは?|MCP入門 5.3|情報の構造化で精度と説明力を高める方法
RAG(検索補助生成)で生成AIが正確に応答するためには、検索結果をどのように文脈化するかが鍵です。MCP設計により、取得情報のスロット化・優先度付け・役割づけを行い、安定した回答と説明責任のある出力を実現する方法を解説します。
2025-03-25

チャットボットの履歴管理とは?|MCP入門 5.1|スコープ制御で精度とコストを最適化する設計
生成AIチャットボットの応答品質は、会話履歴の設計に大きく左右されます。本記事では、MCPを活用して履歴の粒度・要約・トピック切り替えを制御し、自然かつ効率的なチャット体験を作る方法を解説します。
2025-03-23

MCPの実践設計パターンとは?|第5章|チャット・RAG・ツール統合まで網羅的に解説
この章では、Model Context Protocol(MCP)を具体的にどう活用すべきか、チャットボット、タスク切替、RAG、マルチエージェントシステムといった現実的ユースケースごとに設計パターンを解説します。
2025-03-22

外部ツールとのプロトコル統合とは?|MCP入門 4.4|カレンダー・チャット・CRMをAIと連携する設計法
SlackやGoogle Calendar、Salesforceなどの外部ツールと生成AIを連携し、チャットから予定作成や顧客データ操作を行う方法を解説。MCPを活用し、文脈の更新・アクション提案・認証設計まで詳しく紹介します。
2025-03-21

マルチセッションとユーザー管理とは?|MCP入門 4.3|生成AIで複数会話と文脈を自在に制御する方法
一人のユーザーが複数の会話・プロジェクト・目的を同時に扱う時代において、セッション分離と状態復元は不可欠です。本章では、MCPを活用したマルチセッション設計、履歴管理、テンプレート切替、セキュリティまでを詳しく解説します。
2025-03-20

複数モデル(LLM)の使い分け設計とは?|MCP入門 4.2|GPT-4・Claude・Geminiをタスクごとに最適活用
GPT-4、Claude、Geminiなど複数のLLMを目的に応じて使い分ける設計は、生成AIの品質・速度・コスト最適化に不可欠です。本節では、MCPによる役割分担、タスク別・属性別・フォールバック・ワークフロー設計を詳しく解説します。
2025-03-19

RAGとの統合設計とは?|MCP入門 4.1|生成AIの文脈構築を強化する検索補助付き設計
RAG(検索補助付き生成)は、生成AIに最新情報や社内知識を与える鍵です。本章では、MCPとの接続方法、FAQ注入、要約統合、テンプレートとの連携など、RAGとコンテキスト設計を統合する具体的手法を紹介します。
2025-03-18

MCPの拡張と統合とは?|MCP入門 第4章|RAG・マルチモデル・外部ツール連携の設計手法
MCP(Model Context Protocol)の応用編として、RAGの統合、複数LLMの使い分け、マルチセッション管理、外部ツールとの連携など、生成AIを高度に運用するための設計フレームワークを解説します。
2025-03-17

テンプレートとスロットの設計とは?|MCP入門 3.3|生成AIの柔軟で安全な文脈構築法
生成AIの出力に一貫性と安全性を持たせるには、テンプレートとスロット設計が重要です。本章では、プロンプトテンプレート、文脈スロット化、入力サニタイズなど、再利用とセキュリティを両立する具体的なパターンを解説します。
2025-03-15

コンテキストマネジメントとは?|MCP入門 3.2|履歴と外部情報を活かす生成AI設計
生成AIの出力品質は、どんな文脈や履歴情報を参照しているかで決まります。本章では、チャット履歴要約・外部ベクター検索・ユーザープロファイル統合といったMCP設計の基礎を丁寧に解説します。
2025-03-14

MCP実装の基本設計パターンとは?|MCP入門 第3章|生成AIをプロダクトに組み込むための考え方
MCP(Model Context Protocol)をプロダクトや業務システムに実装するには、文脈・状態・履歴・ユーザー情報の扱い方を設計パターンとして整理する必要があります。本章ではMCPの構造化・再現性・スケーラビリティを支える4つの設計手法を紹介します。
2025-03-12

MCPによる状態制御と再現性の向上とは?|MCP入門 2.3|生成AIの安定設計の鍵
生成AIをプロダクトとして安定運用するには、出力の一貫性と再現性が不可欠です。MCP(Model Context Protocol)は文脈と状態を構造化し、モデルの振る舞いを制御・再現可能にします。設計原則から具体例まで詳しく解説。
2025-03-10

Model Context Protocol(MCP)とは何か?|MCP入門 第2章|生成AIの文脈設計の新常識
MCP(Model Context Protocol)とは、生成AIにおける文脈と状態を体系的に制御・再現するための設計原則です。本章ではMCPの定義、従来のプロンプト設計との違い、状態設計による一貫性の向上、実装例などをわかりやすく解説します。
2025-03-07

RAGを強化するハイブリッド検索とMulti-Vector戦略とは?検索の多視点化と精度向上の設計|LLM入門 7.2
意味検索とキーワード検索を組み合わせるハイブリッド検索、複数の視点から検索するMulti-Vector RAG。どちらもRetrieverの精度と柔軟性を高める先進的な手法です。本記事では構成・効果・導入の注意点を解説します。
2025-03-05

RAG設計におけるトークン制限への対処法とは?情報量と生成精度を両立する工夫|LLM入門 6.4
生成AIにはトークン数の上限という物理的な制約があります。本記事では、Retriever出力やプロンプトを設計する際に考慮すべきトークン制限と、その中で最も有効な情報を渡すための工夫と設計指針を解説します。
2025-03-02

RAGにおけるプロンプト合成の設計パターンとは?文脈統合で生成精度を高める方法|LLM入門 6.3
Retrieverで得た情報をLLMにどう渡すかが、RAGの成否を分けます。本記事では、文書構造ごとのプロンプト合成パターンとその効果、生成品質を高めるための設計指針を具体的に解説します。
2025-03-01

大規模言語モデルと対話型AIの「思考状態」を設計するプロトコルの基礎と応用
ChatGPTをはじめとする大規模言語モデル(LLM)の応答精度を高める鍵、それがModel Context Protocol(MCP)です。AIに“文脈”を理解させる新しい設計手法を、初心者にもわかりやすく解説します。
2025-03-01

RAGの検索精度を高める設計術:質問の正規化とドキュメントマッチングとは|LLM入門 6.2
自然文のままでは曖昧なユーザー質問を、検索に適した形式へ整える「質問の正規化」と、意味的に関連する文書を適切に選び出す「マッチング戦略」について、RAG実装の視点からわかりやすく解説します。
2025-02-28

RAGとMCPの関係とは?RetrieverとLLMの役割分担を明確にする設計法|LLM入門 6.1
RAG構成を安定的に運用するには、RetrieverとLLMの責任範囲を明確にする必要があります。本記事では、MCP(Model Context Protocol)を活用して、指示・文脈・入力の3層に分けた設計の考え方を解説します。
2025-02-27

RAGの設計力とは?プロンプトと文脈の最適化で生成精度を高める方法|LLM入門 第6章
高性能なLLMと正確な検索結果を活かす鍵は、プロンプトと文脈の設計にあります。本章では、RAGの実運用で成果を出すための構成・整形・トークン最適化の具体的な手法を、設計者の視点から詳しく解説します。
2025-02-26

Azure Cognitive SearchやElasticでRAGを実現する方法|既存検索基盤を活かす構成とは|LLM入門 5.4
RAGはLangChainやLlamaIndex以外にも、Azure Cognitive SearchやElasticsearchといった既存インフラでも構築可能です。本記事では、それぞれの特徴や適用例、選定ポイントをわかりやすく整理します。
2025-02-25

LlamaIndexとは何か?RAGにおける文書インデックス構築の強みとLangChainとの違い|LLM入門 5.3
LlamaIndexは、RAGの文書処理とインデックス管理に特化したライブラリです。本記事では、LlamaIndexの設計思想と主要機能、LangChainとの違いや併用パターン、実務での活用シーンを丁寧に解説します。
2025-02-24

LangChainでRAGを構築する方法とは?RetrieverからLLM連携まで徹底解説|LLM入門 5.2
LangChainはRAG構築において、Retriever・LLM・プロンプトを一貫してつなぐフレームワークです。本記事では、各モジュールの役割と構成例、導入のメリット・注意点までを、実装の視点からわかりやすく解説します。
2025-02-23

OpenAI Embeddingsとベクトル検索エンジンの連携方法|RAG構築の基本|LLM入門 5.1
RAGを構築する上で基本となるのが、OpenAIの埋め込みモデルとベクトルストアの組み合わせです。本記事では、text-embedding-ada-002の特徴と、FAISSやPineconeとの連携設計、実装時の注意点を詳しく解説します。
2025-02-22

RAG構築に使える主要ツールとサービスの選び方|LLM入門 第5章
RAGを実装するには、適切なツールやサービスの選定が不可欠です。本章では、OpenAI Embeddings、LangChain、LlamaIndex、Azure Cognitive Searchなど、RAG構築に役立つ代表的な選択肢を比較・解説します。
2025-02-21

セマンティック検索とキーワード検索の違いとは?RAGの精度を左右する検索技術|LLM入門 4.4
RAGでは従来のキーワード検索ではなく、意味ベースのセマンティック検索が活用されます。本記事では、両者の違いと特性、ハイブリッド検索の活用法までを比較しながら、実務での使い分け方を丁寧に解説します。
2025-02-20

RAGの回答精度を左右するコンテキスト整形とは?LLMへの最適な情報の渡し方|LLM入門 4.3
RAGにおいてRetrieverが抽出した情報をどのように整形し、LLMに渡すかは、出力の質に直結します。本記事では、プロンプト設計・チャンク構造・トークン最適化など、回答品質を高めるための整形技術を詳しく解説します。
2025-02-19

RAGに適したベクトル検索エンジンとは?FAISS・Weaviate・Pinecone徹底比較|LLM入門 4.2
RAGの検索性能を支えるのがベクトル検索エンジンです。本記事では、FAISS・Weaviate・Pineconeといった代表的エンジンの特徴を比較し、導入時に重視すべき観点や選定ポイントをわかりやすく解説します。
2025-02-18

RAGを構築するための技術要素とは?Embeddingから検索・統合まで解説|LLM入門 第4章
RAG(Retrieval-Augmented Generation)を構築・運用するには、埋め込みモデル、ベクトル検索エンジン、プロンプト整形などの技術が欠かせません。本章では、主要な技術コンポーネントとその選定ポイントを体系的に解説します。
2025-02-16

RAGで専門文書を活用する方法|法務・医療・教育分野での事例と効果|LLM入門 3.3
法律文書、医療ガイドライン、教育要綱など、専門性の高い情報を誰もが使いやすくするにはどうすればよいか。本記事では、RAGを活用して専門文書を自然言語で引き出す仕組みと、実際の活用事例を丁寧に解説します。
2025-02-14

RAGでFAQ対応を自動化する方法と効果とは?顧客サポートをAIで強化|LLM入門 3.2
RAGを活用したFAQ対応Botは、顧客の自然な質問に対して意味ベースで文書を検索し、正確でわかりやすい回答を生成します。本記事では、EC事業者の導入事例とともに、設計・運用のポイントや導入効果を具体的に解説します。
2025-02-13

RAGで社内ナレッジBotを構築する方法と導入効果|LLM入門 3.1
就業規則や業務手順が整備されていても、社員が情報を引き出せない現実があります。本記事では、RAGを活用して社内文書に基づくナレッジBotを構築し、社内問い合わせ削減と業務効率向上を実現した事例を紹介します。
2025-02-12

RAGは何に向いている?生成AIの得意・不得意を整理|LLM入門 2.4
RAGは社内ナレッジ検索やFAQ応答に優れた効果を発揮しますが、数値計算やリアルタイム情報の処理には課題もあります。本記事では、RAGが得意なユースケースと不得意な場面を丁寧に解説し、導入判断の視点を提供します。
2025-02-10

RAGと従来の検索の違いとは?意味ベース検索と生成の融合を解説|LLM入門 2.3
RAGは従来のキーワード検索やFAQとは異なり、意味的に関連する情報を抽出し、生成AIによって自然な回答を構成します。本記事では、RAGの検索の仕組みと従来手法との違いを、事例と比較を交えてわかりやすく解説します。
2025-02-09

RAGの中核構造:RetrieverとGeneratorの役割と分離設計|LLM入門 2.2
RAGにおいて、Retriever(検索部)とGenerator(生成部)の明確な分離は高精度な応答生成の鍵となります。本記事では、それぞれの役割、構造、設計上のメリットについて詳しく解説し、柔軟で拡張性のあるAI構築のための基盤を紹介します。
2025-02-08

RAGとは?検索と生成を組み合わせた新しいAIの仕組み|LLM入門 2.1
RAG(Retrieval-Augmented Generation)は、外部知識を検索してLLMの応答に活かす次世代アーキテクチャです。本記事では、RAGの基本フローや構成要素、従来の生成AIとの違いを図解的にわかりやすく解説します。
2025-02-07

RAGとは何か?検索と生成をつなぐ新しいAIアーキテクチャの全体像|LLM入門 第2章
RAG(Retrieval-Augmented Generation)は、検索と生成を組み合わせた新しい生成AIの構造です。本章では、RAGの基本構造、RetrieverとGeneratorの役割、従来の検索との違い、得意・不得意なケースまで、全体像を体系的に解説します。
2025-02-06

なぜRAGが必要とされるのか?|業務利用で見える生成AIの限界とは|LLM入門 1.2
ChatGPTを業務に導入しようとすると、正確性・柔軟性・更新性に課題が見えてきます。本記事では、企業利用における生成AIの限界と、RAG(Retrieval-Augmented Generation)という新たなアプローチの登場背景を解説します。
2025-02-04

なぜ今RAGが必要なのか?|ChatGPTの限界と知識の外部化|LLM入門 第1章
ChatGPTだけでは業務に使えない──その理由は、固有情報の欠如や幻覚、情報の鮮度にあります。本章では、こうした生成AIの限界と、RAG(Retrieval-Augmented Generation)が求められる背景を丁寧に解説します。
2025-02-02

RAGで業務AIを強化する方法とは?|LLM入門:検索と統合の仕組みを解説
RAG(Retrieval-Augmented Generation)は、大規模言語モデルに社内ナレッジやFAQを統合し、業務に使えるAIを構築する鍵です。本記事ではRAGの仕組み、活用例、導入のステップまで、わかりやすく解説します。
2025-02-01

5.3 NLUとNLGの活用|高度なチャットボットの設計と実装
NLU(自然言語理解)とNLG(自然言語生成)の技術を使用して、よりインテリジェントなチャットボットを構築する方法をPythonの実装例とともに解説。
2024-11-19

5.2 コンテキストを保持したマルチターン会話の実装|LLM活用ガイド
LLMを用いたコンテキストを保持したマルチターン会話の実装方法を紹介。FlaskとRedisを使用したスケーラブルなチャットボットの設計とPythonのサンプルコードを掲載。
2024-11-18

5.1 LLMを活用したチャットボットの基本アーキテクチャ|Python実装ガイド
LLMを活用したチャットボットの基本アーキテクチャとPythonによる簡単なAPI実装例を紹介。FlaskやFastAPIを使用したスケーラブルな設計方法を解説。
2024-11-17

3.3 LLMのデータロードと前処理パイプライン構築|効率的なデータ処理の自動化
LLMトレーニングに必要なデータロードと前処理パイプラインの構築方法を解説。Pythonコード例を使用し、Pandas、Dask、Scikit-learnでの効率的なデータ処理を紹介します。
2024-11-11

8.0 LLMにおける課題と今後の展望 - バイアス、計算リソース、プライバシーの問題と解決策
LLM(大規模言語モデル)が直面する課題と、今後の技術的な進展について解説します。計算リソース、データバイアス、解釈可能性、プライバシーの課題を克服するための取り組みと今後の展望を紹介します。
2024-10-22
カテゴリー
検索履歴
エンジニア向け 328
会話履歴 323
マルコフ連鎖 299
大規模言語モデル 299
自動要約 293
NLP トランスフォーマー 290
データ前処理 287
言語モデル 286
パーソナライズドコンテンツ 282
教育AI 279
注意メカニズム 275
生成型要約 274
トークン化 271
数学的アプローチ 271
セルフアテンション 267
ミニバッチ学習 267
クロスエントロピー損失 260
ロス計算 260
LLM 要約 258
線形代数 258
GPT-2 テキスト生成 257
LLM テキスト生成 256
トレーニング 256
バイアス 問題 255
自動翻訳 252
GPT テキスト生成 250
LLM リアルタイム処理 248
自然言語処理 翻訳 248
GPT ファインチューニング 245
コード生成 245
チーム

任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。

下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。