LLM入門
合計 104 件の記事があります。
現在 3 ページ中の 1 ページ目です。

人格・役割・意図の設計とは?|MCP入門 7.4|AIの“存在”をプロトコルで定義する方法
AIが人格を持ち、役割を柔軟に切り替え、意図を理解して発話する時代が始まろうとしています。本記事では、MCPによってこうした構成要素をどのように設計・再現し、対話的存在としてのAIを実現できるのかを解説します。
2025-04-05

W3CのAI Context仕様とは?|MCP入門 7.3|文脈の国際標準化とMCPの役割
AIの意思決定や会話文脈を明示的に設計するため、W3CではAI Context仕様の標準化が進んでいます。本記事ではその動向と、MCPとの親和性や将来のマッピング可能性について詳しく解説します。
2025-04-04

OpenAI GPT、Claude、Geminiの文脈処理とは?|MCP入門 7.1|各社LLMの設計思想とMCPの位置づけ
各社LLMは文脈や状態の扱い方に独自のアプローチを持っています。本記事ではOpenAI GPTのSystem MessageとMemory API、Claudeの自己内省型設計、Geminiのマルチモーダル連携を比較し、MCPが果たす中立的な役割を明らかにします。
2025-04-02

MCPの未来と標準化への道とは?|MCP入門 7.0|AI文脈設計の次なるステージとグローバル接続性
Model Context Protocol(MCP)はAIの文脈理解と再現性を支える設計思想です。最終章では、各社LLMとの親和性、Memory API連携、W3C標準化、人格と役割の制御まで、MCPの未来像を展望します。
2025-04-01

JSONスキーマによる状態制御の工夫とは?|MCP入門 6.4|一貫性あるAI応答を実現する構造的設計
生成AIの応答を安定化させるには、“状態”の明示が不可欠です。本記事では、MCP設計におけるJSONスキーマの活用方法を詳しく解説し、意図や画面状況をモデルに正しく伝える設計戦略を紹介します。
2025-03-31

システムメッセージ vs ユーザープロンプトとは?|MCP入門 6.2|LLMの人格と応答品質を分ける設計手法
プロンプトには“誰が話すか”という役割の違いがあります。本記事では、システムメッセージとユーザープロンプトの違いを明確化し、モデルの態度・目的意識・人格形成に与える影響、MCP設計への応用を詳しく解説します。
2025-03-29

“明示的な制約”と“暗黙の指示”の違いとは?|MCP入門 6.1|AIが期待に応えるためのプロンプト設計術
生成AIは指示されたことだけでなく、空気や文脈を読むことも求められます。本記事では、プロンプトにおける“明示的な制約”と“暗黙の指示”の違いを解説し、MCP設計を通じて誤解を防ぎ、意図通りの応答を得るための設計手法を紹介します。
2025-03-28

モデルの“意図解釈”と状態伝達とは?|MCP入門 6.0|プロンプトに込められた意図を理解するLLM設計
LLMが正しく応答するためには、文脈だけでなく“何を求められているか”という意図を読み取る力が不可欠です。本章では、明示的な制約・システムメッセージ・構造化文脈などを通じて、モデルがどのように内部状態を形成するかを解説します。
2025-03-27

ツール活用 / マルチエージェントシステムでのMCP適用例とは?|MCP入門 5.4|複数エージェントとツールを統合する文脈設計
ツール活用やマルチエージェント設計では、AIが状態や目的を共有しながら協調する必要があります。MCPを活用することで、共通の文脈管理・状態同期・出力整理を実現し、複雑な連携を安定運用できる方法を解説します。
2025-03-26

ドキュメントベース質問応答(RAG)でのContext設計とは?|MCP入門 5.3|情報の構造化で精度と説明力を高める方法
RAG(検索補助生成)で生成AIが正確に応答するためには、検索結果をどのように文脈化するかが鍵です。MCP設計により、取得情報のスロット化・優先度付け・役割づけを行い、安定した回答と説明責任のある出力を実現する方法を解説します。
2025-03-25

チャットボットの履歴管理とは?|MCP入門 5.1|スコープ制御で精度とコストを最適化する設計
生成AIチャットボットの応答品質は、会話履歴の設計に大きく左右されます。本記事では、MCPを活用して履歴の粒度・要約・トピック切り替えを制御し、自然かつ効率的なチャット体験を作る方法を解説します。
2025-03-23

MCPの実践設計パターンとは?|第5章|チャット・RAG・ツール統合まで網羅的に解説
この章では、Model Context Protocol(MCP)を具体的にどう活用すべきか、チャットボット、タスク切替、RAG、マルチエージェントシステムといった現実的ユースケースごとに設計パターンを解説します。
2025-03-22

外部ツールとのプロトコル統合とは?|MCP入門 4.4|カレンダー・チャット・CRMをAIと連携する設計法
SlackやGoogle Calendar、Salesforceなどの外部ツールと生成AIを連携し、チャットから予定作成や顧客データ操作を行う方法を解説。MCPを活用し、文脈の更新・アクション提案・認証設計まで詳しく紹介します。
2025-03-21

マルチセッションとユーザー管理とは?|MCP入門 4.3|生成AIで複数会話と文脈を自在に制御する方法
一人のユーザーが複数の会話・プロジェクト・目的を同時に扱う時代において、セッション分離と状態復元は不可欠です。本章では、MCPを活用したマルチセッション設計、履歴管理、テンプレート切替、セキュリティまでを詳しく解説します。
2025-03-20

複数モデル(LLM)の使い分け設計とは?|MCP入門 4.2|GPT-4・Claude・Geminiをタスクごとに最適活用
GPT-4、Claude、Geminiなど複数のLLMを目的に応じて使い分ける設計は、生成AIの品質・速度・コスト最適化に不可欠です。本節では、MCPによる役割分担、タスク別・属性別・フォールバック・ワークフロー設計を詳しく解説します。
2025-03-19

ユーザー状態とモデル状態の同期とは?|MCP入門 3.4|生成AIの一貫した応答設計
生成AIの出力の一貫性を保つには、ユーザーとモデルの状態を同期させることが重要です。MCPでは、セッションメモリ、タスク管理、ステートマシン、感情トラッキングなどを活用して文脈と目的を揃える設計が求められます。
2025-03-16

テンプレートとスロットの設計とは?|MCP入門 3.3|生成AIの柔軟で安全な文脈構築法
生成AIの出力に一貫性と安全性を持たせるには、テンプレートとスロット設計が重要です。本章では、プロンプトテンプレート、文脈スロット化、入力サニタイズなど、再利用とセキュリティを両立する具体的なパターンを解説します。
2025-03-15

システムインストラクションの設計パターンとは?|MCP入門 3.1|生成AIの人格と振る舞いの設計
生成AIの出力に一貫性と目的を持たせるには、システムインストラクションの設計が重要です。MCPにおける役割、トーン、ルール、タスク駆動型など、代表的な設計パターンをわかりやすく解説します。
2025-03-13

MCP実装の基本設計パターンとは?|MCP入門 第3章|生成AIをプロダクトに組み込むための考え方
MCP(Model Context Protocol)をプロダクトや業務システムに実装するには、文脈・状態・履歴・ユーザー情報の扱い方を設計パターンとして整理する必要があります。本章ではMCPの構造化・再現性・スケーラビリティを支える4つの設計手法を紹介します。
2025-03-12

OpenAI Function CallingとMCPの関係とは?|MCP入門 2.4|生成AIの構造化出力と実装設計
OpenAIのFunction Callingは、生成AIが構造化された出力を返す仕組みです。MCP(Model Context Protocol)の文脈・状態設計と深く関係し、再現性や拡張性の高いAI実装を支えます。本節ではその原理と設計のポイントを丁寧に解説します。
2025-03-11

MCPによる状態制御と再現性の向上とは?|MCP入門 2.3|生成AIの安定設計の鍵
生成AIをプロダクトとして安定運用するには、出力の一貫性と再現性が不可欠です。MCP(Model Context Protocol)は文脈と状態を構造化し、モデルの振る舞いを制御・再現可能にします。設計原則から具体例まで詳しく解説。
2025-03-10

従来のプロンプト設計とMCPの違いとは?|MCP入門 2.2|生成AI設計の新常識
プロンプトエンジニアリングでは限界がある。MCP(Model Context Protocol)は、文脈と状態を分離・構造化することで、一貫性・拡張性・再現性を備えた生成AIの設計を可能にします。従来手法との違いを比較しながら丁寧に解説。
2025-03-09

MCPとは?生成AIの文脈と状態を設計する仕組み|MCP入門 2.1
MCP(Model Context Protocol)は、生成AIが一貫した出力を生むための文脈と状態を設計・再現するためのプロトコルです。本節ではMCPの定義、プロンプトとの違い、設計思想としての役割を丁寧に解説します。
2025-03-08

Model Context Protocol(MCP)とは何か?|MCP入門 第2章|生成AIの文脈設計の新常識
MCP(Model Context Protocol)とは、生成AIにおける文脈と状態を体系的に制御・再現するための設計原則です。本章ではMCPの定義、従来のプロンプト設計との違い、状態設計による一貫性の向上、実装例などをわかりやすく解説します。
2025-03-07

モデルにとっての記憶とは何か?|MCP入門 1.4|生成AIと文脈再現の技術
生成AIは本当に記憶しているのか?実は、AIの“記憶”は文脈の再構築にすぎません。エフェメラルメモリ・永続メモリ・役割設計など、MCP(Model Context Protocol)での記憶制御の仕組みをわかりやすく解説します。
2025-03-06

コンテキストウィンドウとは?生成AIにおける文脈の限界とMCP設計|MCP入門 1.3
生成AIが扱える“文脈”には上限があります。それがコンテキストウィンドウです。トークン数の制限とは何か、なぜ応答が急に崩れるのか、MCP(Model Context Protocol)における設計の工夫まで、丁寧に解説します。
2025-03-05

プロンプトとコンテクストの違いとは?|MCP入門 1.2|生成AIにおける役割と設計の考え方
生成AIを効果的に活用するには、Prompt(命令)とContext(文脈)を分けて設計する必要があります。MCP(Model Context Protocol)の基礎として、この2つの違いと役割、実装への考え方を詳しく解説します。
2025-03-04

モデルはなぜ文脈を必要とするのか?|MCP入門 1.1|生成AIとコンテキスト理解
ChatGPTをはじめとする生成AIは、入力だけでなく“文脈”によって出力を変えています。なぜ文脈が必要なのか、モデルはどう背景を読み取るのか。MCP設計の基礎となる文脈理解について、具体例を交えて丁寧に解説します。
2025-03-03

モデルコンテキストの基礎|MCP入門 第1章|生成AIが文脈を理解する仕組み
生成AIやChatGPTの出力がなぜ“賢く”見えるのか?その鍵は文脈にあります。MCP(Model Context Protocol)の理解に必要な、AIと文脈の関係、プロンプトとの違い、コンテキストウィンドウの制約などをわかりやすく解説します。
2025-03-02

7.3 マルチモーダルモデルとLLMの統合 | テキスト、画像、音声、映像の融合技術
マルチモーダルモデルとLLMの統合により、テキスト、画像、音声、映像を同時に処理することで、より深い理解と高精度な応答が可能になります。具体的な技術と応用例を紹介します。
2024-11-26

7.2 LLMの省リソーストレーニング技術 | 蒸留、量子化、スパース化、分散トレーニング
LLMのトレーニングにおける省リソース技術を解説。モデル蒸留、量子化、スパース化、分散トレーニングの手法でコストを削減しながら性能を維持する方法を紹介します。
2024-11-25

7.1 LLMの大規模モデル進化 | 性能向上と技術的課題
LLMの大規模モデル化による性能向上と、計算リソースやトレーニングコストの課題を解説。エンジニアが対応すべき技術と今後の展望を紹介します。
2024-11-25

7.0 LLMの未来の展望と課題 | 自然言語処理の進化と技術的チャレンジ
LLM(大規模言語モデル)の進化と今後の可能性について解説。技術的課題や新しいアプリケーションの展望、エンジニアに必要なスキルを紹介します。
2024-11-24

6.3 LLMのCI/CDパイプライン構築 | GitHub ActionsとJenkinsの活用
LLMアプリケーションの継続的インテグレーションと継続的デリバリーを実現するためのGitHub ActionsとJenkinsの設定方法を解説。自動化されたテストとデプロイにより、リリース速度と品質を向上します。
2024-11-23

6.2 LLMモデルのバージョニングとモニタリング | MLflowとPrometheusを活用
LLMモデルの管理を効率化するためのバージョニングとモニタリング手法を解説。MLflowでモデルをバージョン管理し、PrometheusとGrafanaでリアルタイムにパフォーマンスを監視します。
2024-11-22

6.1 LLMアプリケーションのスケーラブルなデプロイ | DockerとKubernetesの活用
LLMアプリケーションをDockerでコンテナ化し、Kubernetesでスケーラブルにデプロイする方法を解説します。Pythonベースのアプリケーションに最適なデプロイ手法です。
2024-11-21

6.0 LLMアプリケーションのデプロイとCI/CDパイプラインの構築
LLMアプリケーションをDockerとKubernetesでデプロイし、GitHub Actionsを使用したCI/CDパイプラインの構築方法を解説します。スケーラブルな運用環境の実現に役立つ情報です。
2024-11-20

5.3 NLUとNLGの活用|高度なチャットボットの設計と実装
NLU(自然言語理解)とNLG(自然言語生成)の技術を使用して、よりインテリジェントなチャットボットを構築する方法をPythonの実装例とともに解説。
2024-11-19

5.0 LLMを活用したチャットボット構築ガイド|Pythonでの実装例付き
LLMを活用してチャットボットを構築する方法を解説。Pythonでの実装例と、スケーラブルなデプロイ手法も紹介。
2024-11-16

4.3 LLMのモデル圧縮技術|知識蒸留、量子化、プルーニングの解説
知識蒸留、量子化、プルーニングなどのモデル圧縮技術を使い、LLMの計算コストと推論速度を改善する方法を解説します。Pythonの実装例も紹介。
2024-11-15

4.2 LLMの推論速度を最適化する方法|バッチ推論と半精度推論の活用
LLMの推論速度を改善するための技術を解説。バッチ推論、ONNX Runtime、半精度推論(FP16)など、効率的な推論手法とその実装例を紹介します。
2024-11-14

4.1 LLMのモデル圧縮技術|効率的な量子化と知識蒸留
LLMのモデル圧縮技術を解説。量子化、知識蒸留、プルーニングの実装例を紹介し、推論速度とリソース効率を向上させる方法を学びます。
2024-11-13

4.0 LLMのモデル圧縮と推論速度の最適化|効率的なパフォーマンス改善
LLMのモデル圧縮技術と推論速度の最適化手法を解説。量子化、知識蒸留、ONNXを使用したPython実装例で効率的なLLMのデプロイをサポート。
2024-11-12

3.3 LLMのデータロードと前処理パイプライン構築|効率的なデータ処理の自動化
LLMトレーニングに必要なデータロードと前処理パイプラインの構築方法を解説。Pythonコード例を使用し、Pandas、Dask、Scikit-learnでの効率的なデータ処理を紹介します。
2024-11-11

3.0 LLMのトークン化とデータ前処理の自動化|効率的なデータクレンジングと前処理パイプライン
LLMのトレーニングに必要なトークン化とデータ前処理の自動化について解説。Pythonコード例とHugging Faceライブラリを使用し、データクレンジングと効率的な前処理パイプラインの構築方法を紹介します。
2024-11-09

2.3 LLMのトレーニング実行とモデル評価|Pythonによるトレーニングと評価手法
LLMのトレーニングと評価の手順をPythonコード例と共に紹介。Hugging Face Transformersを使用したBERTモデルのトレーニング、評価指標の解説、モデルの保存方法を説明します。
2024-11-08

2.1 Hugging Face Transformersを使ったモデルのファインチューニング|BERTのPython実装例
Hugging FaceのTransformersライブラリを使って、BERTモデルのファインチューニングを行う方法を解説します。Pythonコード例と共に、データ前処理やトレーニング設定のポイントも紹介。
2024-11-06

2.0 LLMモデルのファインチューニング|Hugging Faceを使った効率的な微調整手法
Hugging FaceのTransformersライブラリを使用して、LLMのファインチューニングを行う方法を解説。トレーニングデータの準備から評価までの具体的な手順を紹介。
2024-11-05

1.3 LLM推論APIにおけるキャッシュ戦略|高速化と負荷軽減のためのベストプラクティス
LLM推論APIのパフォーマンスを向上させるキャッシュ戦略について解説。Redisを使った具体的な実装例やキャッシュ最適化のベストプラクティスを紹介します。
2024-11-04

1.2 LLM推論APIのスケーリング|水平スケーリング、ロードバランシング、キャッシュ戦略の実装
LLM推論APIのパフォーマンス向上方法を紹介します。水平スケーリング、ロードバランシング、Redisキャッシュ戦略を使用した効率的なAPI設計の実装例を解説。
2024-11-04
タグ
検索履歴
エンジニア向け 287
大規模言語モデル 269
マルコフ連鎖 265
自動要約 264
NLP トランスフォーマー 259
データ前処理 259
言語モデル 252
教育AI 246
パーソナライズドコンテンツ 241
トークン化 239
注意メカニズム 239
セルフアテンション 236
生成型要約 236
ロス計算 235
ミニバッチ学習 234
数学的アプローチ 234
線形代数 233
GPT-2 テキスト生成 231
トレーニング 231
LLM 要約 230
LLM テキスト生成 227
自動翻訳 227
クロスエントロピー損失 226
LLM リアルタイム処理 225
自然言語処理 翻訳 224
バイアス 問題 223
ニュース記事生成 221
コード生成 220
GPT ファインチューニング 218
GPT テキスト生成 215
チーム

任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。

下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。