LLM入門


合計 68 件の記事があります。 現在 2 ページ中の 1 ページ目です。

W3CのAI Context仕様とは?|MCP入門 7.3|文脈の国際標準化とMCPの役割

AIの意思決定や会話文脈を明示的に設計するため、W3CではAI Context仕様の標準化が進んでいます。本記事ではその動向と、MCPとの親和性や将来のマッピング可能性について詳しく解説します。
2025-04-04

LLM Memory APIとMCPの違いとは?|MCP入門 7.2|ユーザー記憶と文脈設計を統合する方法

ユーザー情報や履歴を保存するMemory APIと、構造的な文脈設計を担うMCPは、目的も実装も異なります。本記事では両者の違いと補完関係、そして信頼性の高いプロンプト設計に向けた統合戦略を具体的に解説します。
2025-04-03

MCPの未来と標準化への道とは?|MCP入門 7.0|AI文脈設計の次なるステージとグローバル接続性

Model Context Protocol(MCP)はAIの文脈理解と再現性を支える設計思想です。最終章では、各社LLMとの親和性、Memory API連携、W3C標準化、人格と役割の制御まで、MCPの未来像を展望します。
2025-04-01

モデルの“意図解釈”と状態伝達とは?|MCP入門 6.0|プロンプトに込められた意図を理解するLLM設計

LLMが正しく応答するためには、文脈だけでなく“何を求められているか”という意図を読み取る力が不可欠です。本章では、明示的な制約・システムメッセージ・構造化文脈などを通じて、モデルがどのように内部状態を形成するかを解説します。
2025-03-27

ドキュメントベース質問応答(RAG)でのContext設計とは?|MCP入門 5.3|情報の構造化で精度と説明力を高める方法

RAG(検索補助生成)で生成AIが正確に応答するためには、検索結果をどのように文脈化するかが鍵です。MCP設計により、取得情報のスロット化・優先度付け・役割づけを行い、安定した回答と説明責任のある出力を実現する方法を解説します。
2025-03-25

タスク分離とセッション切り替えとは?|MCP入門 5.2|AI応答の誤りを防ぐ文脈設計

1人のユーザーが複数の目的でAIと対話する時、文脈の混在は誤応答や情報漏洩の原因になります。MCPによるセッションIDやタスクタグの活用により、タスク単位の文脈を安全かつ自然に切り替える方法を詳しく解説します。
2025-03-24

外部ツールとのプロトコル統合とは?|MCP入門 4.4|カレンダー・チャット・CRMをAIと連携する設計法

SlackやGoogle Calendar、Salesforceなどの外部ツールと生成AIを連携し、チャットから予定作成や顧客データ操作を行う方法を解説。MCPを活用し、文脈の更新・アクション提案・認証設計まで詳しく紹介します。
2025-03-21

マルチセッションとユーザー管理とは?|MCP入門 4.3|生成AIで複数会話と文脈を自在に制御する方法

一人のユーザーが複数の会話・プロジェクト・目的を同時に扱う時代において、セッション分離と状態復元は不可欠です。本章では、MCPを活用したマルチセッション設計、履歴管理、テンプレート切替、セキュリティまでを詳しく解説します。
2025-03-20

複数モデル(LLM)の使い分け設計とは?|MCP入門 4.2|GPT-4・Claude・Geminiをタスクごとに最適活用

GPT-4、Claude、Geminiなど複数のLLMを目的に応じて使い分ける設計は、生成AIの品質・速度・コスト最適化に不可欠です。本節では、MCPによる役割分担、タスク別・属性別・フォールバック・ワークフロー設計を詳しく解説します。
2025-03-19

ユーザー状態とモデル状態の同期とは?|MCP入門 3.4|生成AIの一貫した応答設計

生成AIの出力の一貫性を保つには、ユーザーとモデルの状態を同期させることが重要です。MCPでは、セッションメモリ、タスク管理、ステートマシン、感情トラッキングなどを活用して文脈と目的を揃える設計が求められます。
2025-03-16

テンプレートとスロットの設計とは?|MCP入門 3.3|生成AIの柔軟で安全な文脈構築法

生成AIの出力に一貫性と安全性を持たせるには、テンプレートとスロット設計が重要です。本章では、プロンプトテンプレート、文脈スロット化、入力サニタイズなど、再利用とセキュリティを両立する具体的なパターンを解説します。
2025-03-15

コンテキストマネジメントとは?|MCP入門 3.2|履歴と外部情報を活かす生成AI設計

生成AIの出力品質は、どんな文脈や履歴情報を参照しているかで決まります。本章では、チャット履歴要約・外部ベクター検索・ユーザープロファイル統合といったMCP設計の基礎を丁寧に解説します。
2025-03-14

システムインストラクションの設計パターンとは?|MCP入門 3.1|生成AIの人格と振る舞いの設計

生成AIの出力に一貫性と目的を持たせるには、システムインストラクションの設計が重要です。MCPにおける役割、トーン、ルール、タスク駆動型など、代表的な設計パターンをわかりやすく解説します。
2025-03-13

MCP実装の基本設計パターンとは?|MCP入門 第3章|生成AIをプロダクトに組み込むための考え方

MCP(Model Context Protocol)をプロダクトや業務システムに実装するには、文脈・状態・履歴・ユーザー情報の扱い方を設計パターンとして整理する必要があります。本章ではMCPの構造化・再現性・スケーラビリティを支える4つの設計手法を紹介します。
2025-03-12

MCPによる状態制御と再現性の向上とは?|MCP入門 2.3|生成AIの安定設計の鍵

生成AIをプロダクトとして安定運用するには、出力の一貫性と再現性が不可欠です。MCP(Model Context Protocol)は文脈と状態を構造化し、モデルの振る舞いを制御・再現可能にします。設計原則から具体例まで詳しく解説。
2025-03-10

従来のプロンプト設計とMCPの違いとは?|MCP入門 2.2|生成AI設計の新常識

プロンプトエンジニアリングでは限界がある。MCP(Model Context Protocol)は、文脈と状態を分離・構造化することで、一貫性・拡張性・再現性を備えた生成AIの設計を可能にします。従来手法との違いを比較しながら丁寧に解説。
2025-03-09

RAG時代の設計者とは?検索と生成をつなぎ、AIを業務に根づかせる方法|LLM入門 終章

RAGの本質は、情報の選別と構造化を通じて生成AIの文脈を設計すること。本章では、生成AI時代に求められる「検索と生成をつなぐ設計者」の役割と、今後の学びと実装の地図を示します。
2025-03-08

MCPとは?生成AIの文脈と状態を設計する仕組み|MCP入門 2.1

MCP(Model Context Protocol)は、生成AIが一貫した出力を生むための文脈と状態を設計・再現するためのプロトコルです。本節ではMCPの定義、プロンプトとの違い、設計思想としての役割を丁寧に解説します。
2025-03-08

RAGは今後も必要か?生成AI時代における検索設計の価値と使い続ける理由|LLM入門 7.4

長文処理に優れたLLMが登場する中で、RAGを使い続ける意味とは何か。本記事では、情報制御・更新性・出典明示・組織ナレッジ活用という観点から、RAGの価値と今後の活かし方を再評価します。
2025-03-07

RAGを強化するハイブリッド検索とMulti-Vector戦略とは?検索の多視点化と精度向上の設計|LLM入門 7.2

意味検索とキーワード検索を組み合わせるハイブリッド検索、複数の視点から検索するMulti-Vector RAG。どちらもRetrieverの精度と柔軟性を高める先進的な手法です。本記事では構成・効果・導入の注意点を解説します。
2025-03-05

RAGの限界と今後の展望とは?幻覚・検索精度・モデル進化にどう向き合うか|LLM入門 第7章

RAGには明確な強みがある一方で、限界や課題も存在します。本章では、幻覚対策やハイブリッド検索の可能性、大規模コンテキストモデルとの関係、そして今後の運用と設計戦略について実践的に整理します。
2025-03-03

モデルはなぜ文脈を必要とするのか?|MCP入門 1.1|生成AIとコンテキスト理解

ChatGPTをはじめとする生成AIは、入力だけでなく“文脈”によって出力を変えています。なぜ文脈が必要なのか、モデルはどう背景を読み取るのか。MCP設計の基礎となる文脈理解について、具体例を交えて丁寧に解説します。
2025-03-03

RAG設計におけるトークン制限への対処法とは?情報量と生成精度を両立する工夫|LLM入門 6.4

生成AIにはトークン数の上限という物理的な制約があります。本記事では、Retriever出力やプロンプトを設計する際に考慮すべきトークン制限と、その中で最も有効な情報を渡すための工夫と設計指針を解説します。
2025-03-02

RAGの設計力とは?プロンプトと文脈の最適化で生成精度を高める方法|LLM入門 第6章

高性能なLLMと正確な検索結果を活かす鍵は、プロンプトと文脈の設計にあります。本章では、RAGの実運用で成果を出すための構成・整形・トークン最適化の具体的な手法を、設計者の視点から詳しく解説します。
2025-02-26

Azure Cognitive SearchやElasticでRAGを実現する方法|既存検索基盤を活かす構成とは|LLM入門 5.4

RAGはLangChainやLlamaIndex以外にも、Azure Cognitive SearchやElasticsearchといった既存インフラでも構築可能です。本記事では、それぞれの特徴や適用例、選定ポイントをわかりやすく整理します。
2025-02-25

LangChainでRAGを構築する方法とは?RetrieverからLLM連携まで徹底解説|LLM入門 5.2

LangChainはRAG構築において、Retriever・LLM・プロンプトを一貫してつなぐフレームワークです。本記事では、各モジュールの役割と構成例、導入のメリット・注意点までを、実装の視点からわかりやすく解説します。
2025-02-23

RAG構築に使える主要ツールとサービスの選び方|LLM入門 第5章

RAGを実装するには、適切なツールやサービスの選定が不可欠です。本章では、OpenAI Embeddings、LangChain、LlamaIndex、Azure Cognitive Searchなど、RAG構築に役立つ代表的な選択肢を比較・解説します。
2025-02-21

RAGを構築するための技術要素とは?Embeddingから検索・統合まで解説|LLM入門 第4章

RAG(Retrieval-Augmented Generation)を構築・運用するには、埋め込みモデル、ベクトル検索エンジン、プロンプト整形などの技術が欠かせません。本章では、主要な技術コンポーネントとその選定ポイントを体系的に解説します。
2025-02-16

RAG導入の実践ステップと落とし穴とは?PoCから本番運用までの道筋|LLM入門 3.4

RAGはPoC(概念実証)では効果を実感しやすい一方で、実運用への移行には注意点が多数あります。本記事では、導入フェーズにおけるステップと、技術・運用・責任設計の観点から見た“落とし穴”とその回避法を解説します。
2025-02-15

RAGで専門文書を活用する方法|法務・医療・教育分野での事例と効果|LLM入門 3.3

法律文書、医療ガイドライン、教育要綱など、専門性の高い情報を誰もが使いやすくするにはどうすればよいか。本記事では、RAGを活用して専門文書を自然言語で引き出す仕組みと、実際の活用事例を丁寧に解説します。
2025-02-14

RAGでFAQ対応を自動化する方法と効果とは?顧客サポートをAIで強化|LLM入門 3.2

RAGを活用したFAQ対応Botは、顧客の自然な質問に対して意味ベースで文書を検索し、正確でわかりやすい回答を生成します。本記事では、EC事業者の導入事例とともに、設計・運用のポイントや導入効果を具体的に解説します。
2025-02-13

RAGで社内ナレッジBotを構築する方法と導入効果|LLM入門 3.1

就業規則や業務手順が整備されていても、社員が情報を引き出せない現実があります。本記事では、RAGを活用して社内文書に基づくナレッジBotを構築し、社内問い合わせ削減と業務効率向上を実現した事例を紹介します。
2025-02-12

RAGの活用事例と導入効果とは?業務改善を実現する4つのユースケース|LLM入門 第3章

RAG(Retrieval-Augmented Generation)は、社内ナレッジBotやFAQ応答、自動応答の高度化に活用されています。本章では、実際のユースケースと導入プロセス、効果、注意点までを具体的に紹介し、実務に役立つ導入視点を提供します。
2025-02-11

RAGは何に向いている?生成AIの得意・不得意を整理|LLM入門 2.4

RAGは社内ナレッジ検索やFAQ応答に優れた効果を発揮しますが、数値計算やリアルタイム情報の処理には課題もあります。本記事では、RAGが得意なユースケースと不得意な場面を丁寧に解説し、導入判断の視点を提供します。
2025-02-10

RAGの中核構造:RetrieverとGeneratorの役割と分離設計|LLM入門 2.2

RAGにおいて、Retriever(検索部)とGenerator(生成部)の明確な分離は高精度な応答生成の鍵となります。本記事では、それぞれの役割、構造、設計上のメリットについて詳しく解説し、柔軟で拡張性のあるAI構築のための基盤を紹介します。
2025-02-08

RAGとは?検索と生成を組み合わせた新しいAIの仕組み|LLM入門 2.1

RAG(Retrieval-Augmented Generation)は、外部知識を検索してLLMの応答に活かす次世代アーキテクチャです。本記事では、RAGの基本フローや構成要素、従来の生成AIとの違いを図解的にわかりやすく解説します。
2025-02-07

RAGとは何か?検索と生成をつなぐ新しいAIアーキテクチャの全体像|LLM入門 第2章

RAG(Retrieval-Augmented Generation)は、検索と生成を組み合わせた新しい生成AIの構造です。本章では、RAGの基本構造、RetrieverとGeneratorの役割、従来の検索との違い、得意・不得意なケースまで、全体像を体系的に解説します。
2025-02-06

RAGとは何か?「知識の外部化」という新しいAI設計思想|LLM入門 1.3

従来のAIは知識をモデルに内在化させる方式が主流でした。しかし、変化の激しい業務環境では「知識の外部化」が重要になります。本記事では、RAGによって実現される知識とモデルの分離という設計思想の本質を解説します。
2025-02-05

なぜRAGが必要とされるのか?|業務利用で見える生成AIの限界とは|LLM入門 1.2

ChatGPTを業務に導入しようとすると、正確性・柔軟性・更新性に課題が見えてきます。本記事では、企業利用における生成AIの限界と、RAG(Retrieval-Augmented Generation)という新たなアプローチの登場背景を解説します。
2025-02-04

ChatGPTだけでは業務に使えない理由とは?|生成AIの限界とRAGの必要性|LLM入門 1.1

ChatGPTは汎用的な質問に対しては強力なツールですが、業務利用では限界があります。本記事では、固有知識の欠如、幻覚(hallucination)、情報の鮮度といった構造的課題を解説し、RAGという新たなアプローチの必要性を明らかにします。
2025-02-03

なぜ今RAGが必要なのか?|ChatGPTの限界と知識の外部化|LLM入門 第1章

ChatGPTだけでは業務に使えない──その理由は、固有情報の欠如や幻覚、情報の鮮度にあります。本章では、こうした生成AIの限界と、RAG(Retrieval-Augmented Generation)が求められる背景を丁寧に解説します。
2025-02-02

RAGで業務AIを強化する方法とは?|LLM入門:検索と統合の仕組みを解説

RAG(Retrieval-Augmented Generation)は、大規模言語モデルに社内ナレッジやFAQを統合し、業務に使えるAIを構築する鍵です。本記事ではRAGの仕組み、活用例、導入のステップまで、わかりやすく解説します。
2025-02-01

6.1 LLMアプリケーションのスケーラブルなデプロイ | DockerとKubernetesの活用

LLMアプリケーションをDockerでコンテナ化し、Kubernetesでスケーラブルにデプロイする方法を解説します。Pythonベースのアプリケーションに最適なデプロイ手法です。
2024-11-21

6.0 LLMアプリケーションのデプロイとCI/CDパイプラインの構築

LLMアプリケーションをDockerとKubernetesでデプロイし、GitHub Actionsを使用したCI/CDパイプラインの構築方法を解説します。スケーラブルな運用環境の実現に役立つ情報です。
2024-11-20

9.1 LLMを理解するための次のステップ - 実践的な学習方法とプロジェクト参加のすすめ

LLM(大規模言語モデル)の基礎を学んだエンジニアが、さらなる学びを進めるための次のステップを紹介します。研究論文の精読、実践的プロジェクトの参加、モデルのカスタマイズや最適化手法について詳しく解説します。
2024-10-26

7.2 質問応答システムと機械翻訳 - LLMによる自然言語処理の応用技術

LLM(大規模言語モデル)を活用した質問応答システムと機械翻訳の技術について詳しく解説します。カスタマーサポートの自動化、国際ビジネス、観光業界などでの具体的な応用例を紹介します。
2024-10-21

7.1 テキスト生成と自動要約 - LLMによる効率的なコンテンツ生成と要約技術

LLM(大規模言語モデル)を用いたテキスト生成と自動要約技術の仕組みを解説します。ニュース記事の自動生成、報告書の要約、チャットボット応答などの具体的な応用事例も紹介しています。
2024-10-20

7.0 LLMの具体的な応用例 - 自然言語生成、機械翻訳、医療、法律、教育分野の利用事例

LLM(大規模言語モデル)は、自然言語生成、機械翻訳、医療、法律、教育など、様々な分野で幅広く応用されています。具体的な応用事例を通じて、LLMの現実世界での活用方法を紹介します。
2024-10-19

自然言語処理(NLP)とは?|LLM入門 2.3|大規模言語モデルがもたらした進化

NLP(自然言語処理)は、人間の言葉をコンピュータが理解・分析・生成するための技術です。本記事では、テキスト分類・翻訳・要約などのNLPの代表的なタスクと、LLM(大規模言語モデル)の登場によって何が変わったのかを簡潔に解説します。
2024-10-06

7.5 LLMの法的規制とガバナンス:プライバシー保護と倫理対応の重要性

大規模言語モデル(LLM)の法的規制とガバナンスについて解説。プライバシー保護やデータ規制、ガバナンス体制の構築、各国の法的動向に対応したLLM運用のポイントを紹介します。
2024-10-02

チーム

任 弘毅

株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。

下田 昌平

開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。