LLM入門
合計 51 件の記事があります。
現在 2 ページ中の 1 ページ目です。

人格・役割・意図の設計とは?|MCP入門 7.4|AIの“存在”をプロトコルで定義する方法
AIが人格を持ち、役割を柔軟に切り替え、意図を理解して発話する時代が始まろうとしています。本記事では、MCPによってこうした構成要素をどのように設計・再現し、対話的存在としてのAIを実現できるのかを解説します。
2025-04-05

W3CのAI Context仕様とは?|MCP入門 7.3|文脈の国際標準化とMCPの役割
AIの意思決定や会話文脈を明示的に設計するため、W3CではAI Context仕様の標準化が進んでいます。本記事ではその動向と、MCPとの親和性や将来のマッピング可能性について詳しく解説します。
2025-04-04

LLM Memory APIとMCPの違いとは?|MCP入門 7.2|ユーザー記憶と文脈設計を統合する方法
ユーザー情報や履歴を保存するMemory APIと、構造的な文脈設計を担うMCPは、目的も実装も異なります。本記事では両者の違いと補完関係、そして信頼性の高いプロンプト設計に向けた統合戦略を具体的に解説します。
2025-04-03

OpenAI GPT、Claude、Geminiの文脈処理とは?|MCP入門 7.1|各社LLMの設計思想とMCPの位置づけ
各社LLMは文脈や状態の扱い方に独自のアプローチを持っています。本記事ではOpenAI GPTのSystem MessageとMemory API、Claudeの自己内省型設計、Geminiのマルチモーダル連携を比較し、MCPが果たす中立的な役割を明らかにします。
2025-04-02

MCPの未来と標準化への道とは?|MCP入門 7.0|AI文脈設計の次なるステージとグローバル接続性
Model Context Protocol(MCP)はAIの文脈理解と再現性を支える設計思想です。最終章では、各社LLMとの親和性、Memory API連携、W3C標準化、人格と役割の制御まで、MCPの未来像を展望します。
2025-04-01

JSONスキーマによる状態制御の工夫とは?|MCP入門 6.4|一貫性あるAI応答を実現する構造的設計
生成AIの応答を安定化させるには、“状態”の明示が不可欠です。本記事では、MCP設計におけるJSONスキーマの活用方法を詳しく解説し、意図や画面状況をモデルに正しく伝える設計戦略を紹介します。
2025-03-31

システムメッセージ vs ユーザープロンプトとは?|MCP入門 6.2|LLMの人格と応答品質を分ける設計手法
プロンプトには“誰が話すか”という役割の違いがあります。本記事では、システムメッセージとユーザープロンプトの違いを明確化し、モデルの態度・目的意識・人格形成に与える影響、MCP設計への応用を詳しく解説します。
2025-03-29

ツール活用 / マルチエージェントシステムでのMCP適用例とは?|MCP入門 5.4|複数エージェントとツールを統合する文脈設計
ツール活用やマルチエージェント設計では、AIが状態や目的を共有しながら協調する必要があります。MCPを活用することで、共通の文脈管理・状態同期・出力整理を実現し、複雑な連携を安定運用できる方法を解説します。
2025-03-26

チャットボットの履歴管理とは?|MCP入門 5.1|スコープ制御で精度とコストを最適化する設計
生成AIチャットボットの応答品質は、会話履歴の設計に大きく左右されます。本記事では、MCPを活用して履歴の粒度・要約・トピック切り替えを制御し、自然かつ効率的なチャット体験を作る方法を解説します。
2025-03-23

外部ツールとのプロトコル統合とは?|MCP入門 4.4|カレンダー・チャット・CRMをAIと連携する設計法
SlackやGoogle Calendar、Salesforceなどの外部ツールと生成AIを連携し、チャットから予定作成や顧客データ操作を行う方法を解説。MCPを活用し、文脈の更新・アクション提案・認証設計まで詳しく紹介します。
2025-03-21

複数モデル(LLM)の使い分け設計とは?|MCP入門 4.2|GPT-4・Claude・Geminiをタスクごとに最適活用
GPT-4、Claude、Geminiなど複数のLLMを目的に応じて使い分ける設計は、生成AIの品質・速度・コスト最適化に不可欠です。本節では、MCPによる役割分担、タスク別・属性別・フォールバック・ワークフロー設計を詳しく解説します。
2025-03-19

システムインストラクションの設計パターンとは?|MCP入門 3.1|生成AIの人格と振る舞いの設計
生成AIの出力に一貫性と目的を持たせるには、システムインストラクションの設計が重要です。MCPにおける役割、トーン、ルール、タスク駆動型など、代表的な設計パターンをわかりやすく解説します。
2025-03-13

MCP実装の基本設計パターンとは?|MCP入門 第3章|生成AIをプロダクトに組み込むための考え方
MCP(Model Context Protocol)をプロダクトや業務システムに実装するには、文脈・状態・履歴・ユーザー情報の扱い方を設計パターンとして整理する必要があります。本章ではMCPの構造化・再現性・スケーラビリティを支える4つの設計手法を紹介します。
2025-03-12

OpenAI Function CallingとMCPの関係とは?|MCP入門 2.4|生成AIの構造化出力と実装設計
OpenAIのFunction Callingは、生成AIが構造化された出力を返す仕組みです。MCP(Model Context Protocol)の文脈・状態設計と深く関係し、再現性や拡張性の高いAI実装を支えます。本節ではその原理と設計のポイントを丁寧に解説します。
2025-03-11

MCPによる状態制御と再現性の向上とは?|MCP入門 2.3|生成AIの安定設計の鍵
生成AIをプロダクトとして安定運用するには、出力の一貫性と再現性が不可欠です。MCP(Model Context Protocol)は文脈と状態を構造化し、モデルの振る舞いを制御・再現可能にします。設計原則から具体例まで詳しく解説。
2025-03-10

Model Context Protocol(MCP)とは何か?|MCP入門 第2章|生成AIの文脈設計の新常識
MCP(Model Context Protocol)とは、生成AIにおける文脈と状態を体系的に制御・再現するための設計原則です。本章ではMCPの定義、従来のプロンプト設計との違い、状態設計による一貫性の向上、実装例などをわかりやすく解説します。
2025-03-07

RAGは本当に不要になるのか?長文対応LLM時代の検索戦略を再考する|LLM入門 7.3
GPT-4 128kやClaude 2の登場により、「検索せず全文渡す」構成が可能になってきました。本記事ではRetrieval不要論の背景と現実的な限界、そしてRAGの再定義について丁寧に解説します。
2025-03-06

モデルはなぜ文脈を必要とするのか?|MCP入門 1.1|生成AIとコンテキスト理解
ChatGPTをはじめとする生成AIは、入力だけでなく“文脈”によって出力を変えています。なぜ文脈が必要なのか、モデルはどう背景を読み取るのか。MCP設計の基礎となる文脈理解について、具体例を交えて丁寧に解説します。
2025-03-03

RAG設計におけるトークン制限への対処法とは?情報量と生成精度を両立する工夫|LLM入門 6.4
生成AIにはトークン数の上限という物理的な制約があります。本記事では、Retriever出力やプロンプトを設計する際に考慮すべきトークン制限と、その中で最も有効な情報を渡すための工夫と設計指針を解説します。
2025-03-02

Azure Cognitive SearchやElasticでRAGを実現する方法|既存検索基盤を活かす構成とは|LLM入門 5.4
RAGはLangChainやLlamaIndex以外にも、Azure Cognitive SearchやElasticsearchといった既存インフラでも構築可能です。本記事では、それぞれの特徴や適用例、選定ポイントをわかりやすく整理します。
2025-02-25

LangChainでRAGを構築する方法とは?RetrieverからLLM連携まで徹底解説|LLM入門 5.2
LangChainはRAG構築において、Retriever・LLM・プロンプトを一貫してつなぐフレームワークです。本記事では、各モジュールの役割と構成例、導入のメリット・注意点までを、実装の視点からわかりやすく解説します。
2025-02-23

OpenAI Embeddingsとベクトル検索エンジンの連携方法|RAG構築の基本|LLM入門 5.1
RAGを構築する上で基本となるのが、OpenAIの埋め込みモデルとベクトルストアの組み合わせです。本記事では、text-embedding-ada-002の特徴と、FAISSやPineconeとの連携設計、実装時の注意点を詳しく解説します。
2025-02-22

RAG構築に使える主要ツールとサービスの選び方|LLM入門 第5章
RAGを実装するには、適切なツールやサービスの選定が不可欠です。本章では、OpenAI Embeddings、LangChain、LlamaIndex、Azure Cognitive Searchなど、RAG構築に役立つ代表的な選択肢を比較・解説します。
2025-02-21

セマンティック検索とキーワード検索の違いとは?RAGの精度を左右する検索技術|LLM入門 4.4
RAGでは従来のキーワード検索ではなく、意味ベースのセマンティック検索が活用されます。本記事では、両者の違いと特性、ハイブリッド検索の活用法までを比較しながら、実務での使い分け方を丁寧に解説します。
2025-02-20

RAGに適したベクトル検索エンジンとは?FAISS・Weaviate・Pinecone徹底比較|LLM入門 4.2
RAGの検索性能を支えるのがベクトル検索エンジンです。本記事では、FAISS・Weaviate・Pineconeといった代表的エンジンの特徴を比較し、導入時に重視すべき観点や選定ポイントをわかりやすく解説します。
2025-02-18

RAGに欠かせない埋め込みモデルとは?意味検索を支える技術解説|LLM入門 4.1
RAGにおける意味検索の基盤となるのが「埋め込みモデル(Embedding Model)」です。本記事では、OpenAIやSBERTなど代表的モデルの特徴、選定ポイント、チャンク設計との関係をわかりやすく解説します。
2025-02-17

RAGを構築するための技術要素とは?Embeddingから検索・統合まで解説|LLM入門 第4章
RAG(Retrieval-Augmented Generation)を構築・運用するには、埋め込みモデル、ベクトル検索エンジン、プロンプト整形などの技術が欠かせません。本章では、主要な技術コンポーネントとその選定ポイントを体系的に解説します。
2025-02-16

RAG導入の実践ステップと落とし穴とは?PoCから本番運用までの道筋|LLM入門 3.4
RAGはPoC(概念実証)では効果を実感しやすい一方で、実運用への移行には注意点が多数あります。本記事では、導入フェーズにおけるステップと、技術・運用・責任設計の観点から見た“落とし穴”とその回避法を解説します。
2025-02-15

RAGは何に向いている?生成AIの得意・不得意を整理|LLM入門 2.4
RAGは社内ナレッジ検索やFAQ応答に優れた効果を発揮しますが、数値計算やリアルタイム情報の処理には課題もあります。本記事では、RAGが得意なユースケースと不得意な場面を丁寧に解説し、導入判断の視点を提供します。
2025-02-10

RAGの中核構造:RetrieverとGeneratorの役割と分離設計|LLM入門 2.2
RAGにおいて、Retriever(検索部)とGenerator(生成部)の明確な分離は高精度な応答生成の鍵となります。本記事では、それぞれの役割、構造、設計上のメリットについて詳しく解説し、柔軟で拡張性のあるAI構築のための基盤を紹介します。
2025-02-08

RAGで業務AIを強化する方法とは?|LLM入門:検索と統合の仕組みを解説
RAG(Retrieval-Augmented Generation)は、大規模言語モデルに社内ナレッジやFAQを統合し、業務に使えるAIを構築する鍵です。本記事ではRAGの仕組み、活用例、導入のステップまで、わかりやすく解説します。
2025-02-01

5.3 NLUとNLGの活用|高度なチャットボットの設計と実装
NLU(自然言語理解)とNLG(自然言語生成)の技術を使用して、よりインテリジェントなチャットボットを構築する方法をPythonの実装例とともに解説。
2024-11-19

5.2 コンテキストを保持したマルチターン会話の実装|LLM活用ガイド
LLMを用いたコンテキストを保持したマルチターン会話の実装方法を紹介。FlaskとRedisを使用したスケーラブルなチャットボットの設計とPythonのサンプルコードを掲載。
2024-11-18

5.1 LLMを活用したチャットボットの基本アーキテクチャ|Python実装ガイド
LLMを活用したチャットボットの基本アーキテクチャとPythonによる簡単なAPI実装例を紹介。FlaskやFastAPIを使用したスケーラブルな設計方法を解説。
2024-11-17

5.0 LLMを活用したチャットボット構築ガイド|Pythonでの実装例付き
LLMを活用してチャットボットを構築する方法を解説。Pythonでの実装例と、スケーラブルなデプロイ手法も紹介。
2024-11-16

2.0 LLMモデルのファインチューニング|Hugging Faceを使った効率的な微調整手法
Hugging FaceのTransformersライブラリを使用して、LLMのファインチューニングを行う方法を解説。トレーニングデータの準備から評価までの具体的な手順を紹介。
2024-11-05

1.3 LLM推論APIにおけるキャッシュ戦略|高速化と負荷軽減のためのベストプラクティス
LLM推論APIのパフォーマンスを向上させるキャッシュ戦略について解説。Redisを使った具体的な実装例やキャッシュ最適化のベストプラクティスを紹介します。
2024-11-04

1.2 LLM推論APIのスケーリング|水平スケーリング、ロードバランシング、キャッシュ戦略の実装
LLM推論APIのパフォーマンス向上方法を紹介します。水平スケーリング、ロードバランシング、Redisキャッシュ戦略を使用した効率的なAPI設計の実装例を解説。
2024-11-04

1.1 FlaskとFastAPIによるLLM APIの基本設計 | シンプルなPython API構築ガイド
FlaskとFastAPIを使用して、LLM(大規模言語モデル)APIの設計と実装を学びましょう。基本的なエンドポイントの作成、リクエスト処理、エラーハンドリングを含むシンプルなPythonガイドです。初心者から中級者まで、実践的なAPI構築に役立つ内容です。
2024-11-03

1.0 LLM API設計と実装ガイド | Flask & FastAPIチュートリアル
PythonフレームワークのFlaskやFastAPIを使ったLLM(大規模言語モデル)のAPI設計と実装方法を解説します。基本設計から、推論APIのスケーリング、キャッシュ戦略まで、効率的なLLM活用のための具体的な手法を紹介します。
2024-11-02

LLM入門:Pythonを用いたLLMアプリケーション構築ガイド | API設計、微調整、デプロイ
Pythonエンジニア向けに、LLM(大規模言語モデル)を活用したアプリケーションの構築方法を徹底解説。FlaskやFastAPIを使ったAPI設計、モデルの微調整(ファインチューニング)、データ前処理の自動化、推論速度の最適化、Docker/Kubernetesを使ったデプロイまで、実践的な内容をカバーします。
2024-11-01

9.2 LLMの実装に向けたリソースと学習の提案 - 効果的なツールとコースの活用
LLM(大規模言語モデル)の実装に必要なリソースや学習方法を紹介します。オープンソースフレームワーク、クラウドプラットフォーム、データセット、オンラインコースなど、実践的なアプローチに必要なリソースを提供します。
2024-10-27

9.1 LLMを理解するための次のステップ - 実践的な学習方法とプロジェクト参加のすすめ
LLM(大規模言語モデル)の基礎を学んだエンジニアが、さらなる学びを進めるための次のステップを紹介します。研究論文の精読、実践的プロジェクトの参加、モデルのカスタマイズや最適化手法について詳しく解説します。
2024-10-26

2.1 LLM(大規模言語モデル)とは、人間の言葉を“理解しようとする”AIのしくみ
自然言語処理(NLP)の基本概念と、その数学的手法を解説します。確率論、統計、線形代数を利用したアプローチを通じて、NLPがどのようにテキストを理解・生成し、LLMに応用されているのかを紹介します。
2024-10-06

6.2 Pythonを使ったLLM実装例 | Hugging Face, OpenAI, Google Cloud, Azureを活用したテキスト生成
Pythonを使ってLLM(大規模言語モデル)を簡単に実装する方法をエンジニア向けに解説。Hugging Face、OpenAI、Google Cloud、Azureを使用したテキスト生成や感情分析の実装例を紹介します。
2024-09-26

6.1 LLMを試すためのオープンソースツールとAPIの紹介 | Hugging Face, OpenAI, Google Cloud, Azure
LLM(大規模言語モデル)を試すための主要なオープンソースツールやAPIをエンジニア向けに解説。Hugging Face、OpenAI、Google Cloud AI、Microsoft Azure Cognitive Servicesの特徴と使用方法を紹介し、簡単な実装例も提供。
2024-09-25

6.0 実際にLLMを試してみる | オープンソースツールと簡単な実装例
LLM(大規模言語モデル)を実際に試すためのオープンソースツールやAPIを紹介し、エンジニア向けにPythonを使った簡単な実装例を提供します。テキスト生成や会話ボットの構築、デプロイ方法についても解説。
2024-09-24

4.4 LLMによるコード生成 | 生産性を高める自動コード生成とその応用
LLM(大規模言語モデル)を活用したコード生成の仕組みをエンジニア向けに解説。テンプレートコードや関数の自動生成、テストコードの生成など、開発現場での応用例とともに、GitHub Copilotなどの事例を紹介。
2024-09-19

2.3 BERT, GPT, T5などの代表的なLLMモデルの解説 | 自然言語処理タスクへの応用
BERT、GPT、T5などの代表的なLLMモデルをエンジニア向けに解説。それぞれのモデルが持つ特徴と強み、適用されるNLPタスクについて詳しく説明します。プロジェクトに最適なモデルを選ぶためのガイド。
2024-09-10

1.3 LLMと機械学習の違い | トランスフォーマー、トランスファーラーニング、汎用性の比較
LLM(大規模言語モデル)と従来の機械学習(ML)モデルの違いを解説。トランスフォーマーアーキテクチャの利点、汎用性、データスケーラビリティ、トランスファーラーニングの活用をエンジニア向けに詳しく説明。
2024-09-05
カテゴリー
検索履歴
会話履歴 380
エンジニア向け 339
マルコフ連鎖 306
大規模言語モデル 305
自動要約 303
NLP トランスフォーマー 299
言語モデル 292
データ前処理 290
パーソナライズドコンテンツ 289
生成型要約 284
教育AI 283
注意メカニズム 283
数学的アプローチ 280
トークン化 277
ミニバッチ学習 274
セルフアテンション 269
LLM 要約 267
クロスエントロピー損失 265
ロス計算 265
LLM テキスト生成 264
バイアス 問題 261
線形代数 261
GPT-2 テキスト生成 260
トレーニング 260
GPT テキスト生成 258
自動翻訳 257
LLM リアルタイム処理 254
自然言語処理 翻訳 254
コード生成 250
GPT ファインチューニング 249
チーム

任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。

下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。