LLM入門
合計 57 件の記事があります。
現在 2 ページ中の 1 ページ目です。

ドキュメントベース質問応答(RAG)でのContext設計とは?|MCP入門 5.3|情報の構造化で精度と説明力を高める方法
RAG(検索補助生成)で生成AIが正確に応答するためには、検索結果をどのように文脈化するかが鍵です。MCP設計により、取得情報のスロット化・優先度付け・役割づけを行い、安定した回答と説明責任のある出力を実現する方法を解説します。
2025-03-25

MCPの実践設計パターンとは?|第5章|チャット・RAG・ツール統合まで網羅的に解説
この章では、Model Context Protocol(MCP)を具体的にどう活用すべきか、チャットボット、タスク切替、RAG、マルチエージェントシステムといった現実的ユースケースごとに設計パターンを解説します。
2025-03-22

RAGとの統合設計とは?|MCP入門 4.1|生成AIの文脈構築を強化する検索補助付き設計
RAG(検索補助付き生成)は、生成AIに最新情報や社内知識を与える鍵です。本章では、MCPとの接続方法、FAQ注入、要約統合、テンプレートとの連携など、RAGとコンテキスト設計を統合する具体的手法を紹介します。
2025-03-18

MCPの拡張と統合とは?|MCP入門 第4章|RAG・マルチモデル・外部ツール連携の設計手法
MCP(Model Context Protocol)の応用編として、RAGの統合、複数LLMの使い分け、マルチセッション管理、外部ツールとの連携など、生成AIを高度に運用するための設計フレームワークを解説します。
2025-03-17

コンテキストマネジメントとは?|MCP入門 3.2|履歴と外部情報を活かす生成AI設計
生成AIの出力品質は、どんな文脈や履歴情報を参照しているかで決まります。本章では、チャット履歴要約・外部ベクター検索・ユーザープロファイル統合といったMCP設計の基礎を丁寧に解説します。
2025-03-14

OpenAI Function CallingとMCPの関係とは?|MCP入門 2.4|生成AIの構造化出力と実装設計
OpenAIのFunction Callingは、生成AIが構造化された出力を返す仕組みです。MCP(Model Context Protocol)の文脈・状態設計と深く関係し、再現性や拡張性の高いAI実装を支えます。本節ではその原理と設計のポイントを丁寧に解説します。
2025-03-11

RAG時代の設計者とは?検索と生成をつなぎ、AIを業務に根づかせる方法|LLM入門 終章
RAGの本質は、情報の選別と構造化を通じて生成AIの文脈を設計すること。本章では、生成AI時代に求められる「検索と生成をつなぐ設計者」の役割と、今後の学びと実装の地図を示します。
2025-03-08

RAGは今後も必要か?生成AI時代における検索設計の価値と使い続ける理由|LLM入門 7.4
長文処理に優れたLLMが登場する中で、RAGを使い続ける意味とは何か。本記事では、情報制御・更新性・出典明示・組織ナレッジ活用という観点から、RAGの価値と今後の活かし方を再評価します。
2025-03-07

RAGは本当に不要になるのか?長文対応LLM時代の検索戦略を再考する|LLM入門 7.3
GPT-4 128kやClaude 2の登場により、「検索せず全文渡す」構成が可能になってきました。本記事ではRetrieval不要論の背景と現実的な限界、そしてRAGの再定義について丁寧に解説します。
2025-03-06

RAGを強化するハイブリッド検索とMulti-Vector戦略とは?検索の多視点化と精度向上の設計|LLM入門 7.2
意味検索とキーワード検索を組み合わせるハイブリッド検索、複数の視点から検索するMulti-Vector RAG。どちらもRetrieverの精度と柔軟性を高める先進的な手法です。本記事では構成・効果・導入の注意点を解説します。
2025-03-05

RAGにおける幻覚とは?情報の過不足を防ぎ生成精度を高める設計法|LLM入門 7.1
RAG構成でも、LLMによる幻覚(hallucination)は発生します。本記事では、Retriever精度、プロンプト設計、出典明示などにより幻覚を抑える具体的な方法と、検知・評価の技術までを丁寧に解説します。
2025-03-04

RAGの限界と今後の展望とは?幻覚・検索精度・モデル進化にどう向き合うか|LLM入門 第7章
RAGには明確な強みがある一方で、限界や課題も存在します。本章では、幻覚対策やハイブリッド検索の可能性、大規模コンテキストモデルとの関係、そして今後の運用と設計戦略について実践的に整理します。
2025-03-03

RAGにおけるプロンプト合成の設計パターンとは?文脈統合で生成精度を高める方法|LLM入門 6.3
Retrieverで得た情報をLLMにどう渡すかが、RAGの成否を分けます。本記事では、文書構造ごとのプロンプト合成パターンとその効果、生成品質を高めるための設計指針を具体的に解説します。
2025-03-01

RAGの検索精度を高める設計術:質問の正規化とドキュメントマッチングとは|LLM入門 6.2
自然文のままでは曖昧なユーザー質問を、検索に適した形式へ整える「質問の正規化」と、意味的に関連する文書を適切に選び出す「マッチング戦略」について、RAG実装の視点からわかりやすく解説します。
2025-02-28

RAGとMCPの関係とは?RetrieverとLLMの役割分担を明確にする設計法|LLM入門 6.1
RAG構成を安定的に運用するには、RetrieverとLLMの責任範囲を明確にする必要があります。本記事では、MCP(Model Context Protocol)を活用して、指示・文脈・入力の3層に分けた設計の考え方を解説します。
2025-02-27

RAGの設計力とは?プロンプトと文脈の最適化で生成精度を高める方法|LLM入門 第6章
高性能なLLMと正確な検索結果を活かす鍵は、プロンプトと文脈の設計にあります。本章では、RAGの実運用で成果を出すための構成・整形・トークン最適化の具体的な手法を、設計者の視点から詳しく解説します。
2025-02-26

LangChainでRAGを構築する方法とは?RetrieverからLLM連携まで徹底解説|LLM入門 5.2
LangChainはRAG構築において、Retriever・LLM・プロンプトを一貫してつなぐフレームワークです。本記事では、各モジュールの役割と構成例、導入のメリット・注意点までを、実装の視点からわかりやすく解説します。
2025-02-23

OpenAI Embeddingsとベクトル検索エンジンの連携方法|RAG構築の基本|LLM入門 5.1
RAGを構築する上で基本となるのが、OpenAIの埋め込みモデルとベクトルストアの組み合わせです。本記事では、text-embedding-ada-002の特徴と、FAISSやPineconeとの連携設計、実装時の注意点を詳しく解説します。
2025-02-22

RAG構築に使える主要ツールとサービスの選び方|LLM入門 第5章
RAGを実装するには、適切なツールやサービスの選定が不可欠です。本章では、OpenAI Embeddings、LangChain、LlamaIndex、Azure Cognitive Searchなど、RAG構築に役立つ代表的な選択肢を比較・解説します。
2025-02-21

セマンティック検索とキーワード検索の違いとは?RAGの精度を左右する検索技術|LLM入門 4.4
RAGでは従来のキーワード検索ではなく、意味ベースのセマンティック検索が活用されます。本記事では、両者の違いと特性、ハイブリッド検索の活用法までを比較しながら、実務での使い分け方を丁寧に解説します。
2025-02-20

RAGの回答精度を左右するコンテキスト整形とは?LLMへの最適な情報の渡し方|LLM入門 4.3
RAGにおいてRetrieverが抽出した情報をどのように整形し、LLMに渡すかは、出力の質に直結します。本記事では、プロンプト設計・チャンク構造・トークン最適化など、回答品質を高めるための整形技術を詳しく解説します。
2025-02-19

RAGに欠かせない埋め込みモデルとは?意味検索を支える技術解説|LLM入門 4.1
RAGにおける意味検索の基盤となるのが「埋め込みモデル(Embedding Model)」です。本記事では、OpenAIやSBERTなど代表的モデルの特徴、選定ポイント、チャンク設計との関係をわかりやすく解説します。
2025-02-17

RAGを構築するための技術要素とは?Embeddingから検索・統合まで解説|LLM入門 第4章
RAG(Retrieval-Augmented Generation)を構築・運用するには、埋め込みモデル、ベクトル検索エンジン、プロンプト整形などの技術が欠かせません。本章では、主要な技術コンポーネントとその選定ポイントを体系的に解説します。
2025-02-16

RAG導入の実践ステップと落とし穴とは?PoCから本番運用までの道筋|LLM入門 3.4
RAGはPoC(概念実証)では効果を実感しやすい一方で、実運用への移行には注意点が多数あります。本記事では、導入フェーズにおけるステップと、技術・運用・責任設計の観点から見た“落とし穴”とその回避法を解説します。
2025-02-15

RAGで専門文書を活用する方法|法務・医療・教育分野での事例と効果|LLM入門 3.3
法律文書、医療ガイドライン、教育要綱など、専門性の高い情報を誰もが使いやすくするにはどうすればよいか。本記事では、RAGを活用して専門文書を自然言語で引き出す仕組みと、実際の活用事例を丁寧に解説します。
2025-02-14

RAGの活用事例と導入効果とは?業務改善を実現する4つのユースケース|LLM入門 第3章
RAG(Retrieval-Augmented Generation)は、社内ナレッジBotやFAQ応答、自動応答の高度化に活用されています。本章では、実際のユースケースと導入プロセス、効果、注意点までを具体的に紹介し、実務に役立つ導入視点を提供します。
2025-02-11

RAGは何に向いている?生成AIの得意・不得意を整理|LLM入門 2.4
RAGは社内ナレッジ検索やFAQ応答に優れた効果を発揮しますが、数値計算やリアルタイム情報の処理には課題もあります。本記事では、RAGが得意なユースケースと不得意な場面を丁寧に解説し、導入判断の視点を提供します。
2025-02-10

RAGと従来の検索の違いとは?意味ベース検索と生成の融合を解説|LLM入門 2.3
RAGは従来のキーワード検索やFAQとは異なり、意味的に関連する情報を抽出し、生成AIによって自然な回答を構成します。本記事では、RAGの検索の仕組みと従来手法との違いを、事例と比較を交えてわかりやすく解説します。
2025-02-09

RAGの中核構造:RetrieverとGeneratorの役割と分離設計|LLM入門 2.2
RAGにおいて、Retriever(検索部)とGenerator(生成部)の明確な分離は高精度な応答生成の鍵となります。本記事では、それぞれの役割、構造、設計上のメリットについて詳しく解説し、柔軟で拡張性のあるAI構築のための基盤を紹介します。
2025-02-08

RAGとは?検索と生成を組み合わせた新しいAIの仕組み|LLM入門 2.1
RAG(Retrieval-Augmented Generation)は、外部知識を検索してLLMの応答に活かす次世代アーキテクチャです。本記事では、RAGの基本フローや構成要素、従来の生成AIとの違いを図解的にわかりやすく解説します。
2025-02-07

RAGとは何か?検索と生成をつなぐ新しいAIアーキテクチャの全体像|LLM入門 第2章
RAG(Retrieval-Augmented Generation)は、検索と生成を組み合わせた新しい生成AIの構造です。本章では、RAGの基本構造、RetrieverとGeneratorの役割、従来の検索との違い、得意・不得意なケースまで、全体像を体系的に解説します。
2025-02-06

RAGとは何か?「知識の外部化」という新しいAI設計思想|LLM入門 1.3
従来のAIは知識をモデルに内在化させる方式が主流でした。しかし、変化の激しい業務環境では「知識の外部化」が重要になります。本記事では、RAGによって実現される知識とモデルの分離という設計思想の本質を解説します。
2025-02-05

なぜRAGが必要とされるのか?|業務利用で見える生成AIの限界とは|LLM入門 1.2
ChatGPTを業務に導入しようとすると、正確性・柔軟性・更新性に課題が見えてきます。本記事では、企業利用における生成AIの限界と、RAG(Retrieval-Augmented Generation)という新たなアプローチの登場背景を解説します。
2025-02-04

ChatGPTだけでは業務に使えない理由とは?|生成AIの限界とRAGの必要性|LLM入門 1.1
ChatGPTは汎用的な質問に対しては強力なツールですが、業務利用では限界があります。本記事では、固有知識の欠如、幻覚(hallucination)、情報の鮮度といった構造的課題を解説し、RAGという新たなアプローチの必要性を明らかにします。
2025-02-03

なぜ今RAGが必要なのか?|ChatGPTの限界と知識の外部化|LLM入門 第1章
ChatGPTだけでは業務に使えない──その理由は、固有情報の欠如や幻覚、情報の鮮度にあります。本章では、こうした生成AIの限界と、RAG(Retrieval-Augmented Generation)が求められる背景を丁寧に解説します。
2025-02-02

RAGで業務AIを強化する方法とは?|LLM入門:検索と統合の仕組みを解説
RAG(Retrieval-Augmented Generation)は、大規模言語モデルに社内ナレッジやFAQを統合し、業務に使えるAIを構築する鍵です。本記事ではRAGの仕組み、活用例、導入のステップまで、わかりやすく解説します。
2025-02-01

5.3 NLUとNLGの活用|高度なチャットボットの設計と実装
NLU(自然言語理解)とNLG(自然言語生成)の技術を使用して、よりインテリジェントなチャットボットを構築する方法をPythonの実装例とともに解説。
2024-11-19

1.1 FlaskとFastAPIによるLLM APIの基本設計 | シンプルなPython API構築ガイド
FlaskとFastAPIを使用して、LLM(大規模言語モデル)APIの設計と実装を学びましょう。基本的なエンドポイントの作成、リクエスト処理、エラーハンドリングを含むシンプルなPythonガイドです。初心者から中級者まで、実践的なAPI構築に役立つ内容です。
2024-11-03

7.2 質問応答システムと機械翻訳 - LLMによる自然言語処理の応用技術
LLM(大規模言語モデル)を活用した質問応答システムと機械翻訳の技術について詳しく解説します。カスタマーサポートの自動化、国際ビジネス、観光業界などでの具体的な応用例を紹介します。
2024-10-21

7.1 テキスト生成と自動要約 - LLMによる効率的なコンテンツ生成と要約技術
LLM(大規模言語モデル)を用いたテキスト生成と自動要約技術の仕組みを解説します。ニュース記事の自動生成、報告書の要約、チャットボット応答などの具体的な応用事例も紹介しています。
2024-10-20

7.0 LLMの具体的な応用例 - 自然言語生成、機械翻訳、医療、法律、教育分野の利用事例
LLM(大規模言語モデル)は、自然言語生成、機械翻訳、医療、法律、教育など、様々な分野で幅広く応用されています。具体的な応用事例を通じて、LLMの現実世界での活用方法を紹介します。
2024-10-19

3.2 線形代数とベクトル空間 - LLMにおける単語埋め込みの数理的基盤
線形代数はLLM(大規模言語モデル)の数理的基盤です。単語の埋め込みやベクトル空間内での操作、コサイン類似度を用いた単語の関係性の解析について詳しく解説します。
2024-10-10

3.1 確率論と統計 - LLMにおける言語生成と予測の基礎
確率論と統計は、LLMの言語生成や次の単語の予測において重要な役割を果たします。n-gramモデル、マルコフ連鎖、最大尤度推定(MLE)など、LLMの予測精度を向上させる数理的手法について解説します。
2024-10-09

3.0 LLMの数理モデル - 確率論と線形代数の基礎解説
LLMの動作に深く関わる数理モデルについて解説します。確率論や統計がどのように言語生成に使われ、線形代数が単語埋め込みやベクトル空間での計算にどのように貢献しているのかを詳しく説明します。
2024-10-08

1.2 確率論の基本と対話生成|LLMの次単語予測を学ぶ
LMは対話を“一単語ずつの確率予測”で生成します。本記事では「P(次の単語|文脈)」の考え方、自己回帰的生成、Top-kサンプリングやTemperature制御まで、確率論の基礎を対話例とともにわかりやすく解説します。
2024-10-04

LLM入門 - 数学で理解する大規模言語モデルの仕組み
大規模言語モデル(LLM)の基礎から応用までを初心者向けにわかりやすく解説。LLMの仕組み、トレーニング、活用方法を体系的に学べる入門ガイド。
2024-10-01

5.0 LLMを使う際の注意点 | バイアス、リソース、リアルタイム処理の課題
LLM(大規模言語モデル)を使用する際の注意点についてエンジニア向けに解説。バイアスや倫理的問題、計算リソースとコスト、リアルタイムでの使用における技術的な課題について詳述。
2024-09-20

4.4 LLMによるコード生成 | 生産性を高める自動コード生成とその応用
LLM(大規模言語モデル)を活用したコード生成の仕組みをエンジニア向けに解説。テンプレートコードや関数の自動生成、テストコードの生成など、開発現場での応用例とともに、GitHub Copilotなどの事例を紹介。
2024-09-19

4.3 LLMによる翻訳と要約 | 高度な文脈理解による効率的な情報処理
LLM(大規模言語モデル)を活用した翻訳と要約の仕組みをエンジニア向けに解説。トランスフォーマーモデルを活用し、翻訳と要約がどのように実現されるか、具体的な応用例と共に紹介。
2024-09-18

4.2 LLMによる質問応答システム | 高精度な回答生成とその応用例
LLM(大規模言語モデル)を活用した質問応答システムの仕組みと応用例をエンジニア向けに解説。カスタマーサポート、FAQ、検索エンジン強化など、様々な分野での実際の使用ケースを紹介。
2024-09-17
カテゴリー
検索履歴
会話履歴 677
エンジニア向け 382
マルコフ連鎖 360
自動要約 356
大規模言語モデル 354
NLP トランスフォーマー 343
注意メカニズム 343
生成型要約 342
言語モデル 338
トークン化 337
教育AI 333
数学的アプローチ 333
パーソナライズドコンテンツ 330
データ前処理 328
ミニバッチ学習 327
LLM 要約 317
LLM テキスト生成 316
クロスエントロピー損失 316
GPT テキスト生成 313
ロス計算 307
GPT-2 テキスト生成 305
セルフアテンション 304
トレーニング 304
自動翻訳 299
バイアス 問題 298
自然言語処理 翻訳 295
コード生成 293
線形代数 292
バッチサイズ 291
LLM リアルタイム処理 289
チーム

任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。

下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。