LLM入門
合計 74 件の記事があります。
現在 2 ページ中の 1 ページ目です。

LLM Memory APIとMCPの違いとは?|MCP入門 7.2|ユーザー記憶と文脈設計を統合する方法
ユーザー情報や履歴を保存するMemory APIと、構造的な文脈設計を担うMCPは、目的も実装も異なります。本記事では両者の違いと補完関係、そして信頼性の高いプロンプト設計に向けた統合戦略を具体的に解説します。
2025-04-03

ストラクチャード・コンテキスト vs ナチュラル・プロンプティングとは?|MCP入門 6.3|構造化と柔軟性を両立するプロンプト設計
生成AIに文脈を渡すには、JSON形式の構造化データか自然言語プロンプトか、どちらが適切か。本記事では、MCP設計において“ストラクチャード・コンテキスト”と“ナチュラル・プロンプティング”の違いと併用戦略を詳しく解説します。
2025-03-30

外部ツールとのプロトコル統合とは?|MCP入門 4.4|カレンダー・チャット・CRMをAIと連携する設計法
SlackやGoogle Calendar、Salesforceなどの外部ツールと生成AIを連携し、チャットから予定作成や顧客データ操作を行う方法を解説。MCPを活用し、文脈の更新・アクション提案・認証設計まで詳しく紹介します。
2025-03-21

RAGとの統合設計とは?|MCP入門 4.1|生成AIの文脈構築を強化する検索補助付き設計
RAG(検索補助付き生成)は、生成AIに最新情報や社内知識を与える鍵です。本章では、MCPとの接続方法、FAQ注入、要約統合、テンプレートとの連携など、RAGとコンテキスト設計を統合する具体的手法を紹介します。
2025-03-18

コンテキストマネジメントとは?|MCP入門 3.2|履歴と外部情報を活かす生成AI設計
生成AIの出力品質は、どんな文脈や履歴情報を参照しているかで決まります。本章では、チャット履歴要約・外部ベクター検索・ユーザープロファイル統合といったMCP設計の基礎を丁寧に解説します。
2025-03-14

システムインストラクションの設計パターンとは?|MCP入門 3.1|生成AIの人格と振る舞いの設計
生成AIの出力に一貫性と目的を持たせるには、システムインストラクションの設計が重要です。MCPにおける役割、トーン、ルール、タスク駆動型など、代表的な設計パターンをわかりやすく解説します。
2025-03-13

OpenAI Function CallingとMCPの関係とは?|MCP入門 2.4|生成AIの構造化出力と実装設計
OpenAIのFunction Callingは、生成AIが構造化された出力を返す仕組みです。MCP(Model Context Protocol)の文脈・状態設計と深く関係し、再現性や拡張性の高いAI実装を支えます。本節ではその原理と設計のポイントを丁寧に解説します。
2025-03-11

RAGは今後も必要か?生成AI時代における検索設計の価値と使い続ける理由|LLM入門 7.4
長文処理に優れたLLMが登場する中で、RAGを使い続ける意味とは何か。本記事では、情報制御・更新性・出典明示・組織ナレッジ活用という観点から、RAGの価値と今後の活かし方を再評価します。
2025-03-07

コンテキストウィンドウとは?生成AIにおける文脈の限界とMCP設計|MCP入門 1.3
生成AIが扱える“文脈”には上限があります。それがコンテキストウィンドウです。トークン数の制限とは何か、なぜ応答が急に崩れるのか、MCP(Model Context Protocol)における設計の工夫まで、丁寧に解説します。
2025-03-05

RAG設計におけるトークン制限への対処法とは?情報量と生成精度を両立する工夫|LLM入門 6.4
生成AIにはトークン数の上限という物理的な制約があります。本記事では、Retriever出力やプロンプトを設計する際に考慮すべきトークン制限と、その中で最も有効な情報を渡すための工夫と設計指針を解説します。
2025-03-02

Azure Cognitive SearchやElasticでRAGを実現する方法|既存検索基盤を活かす構成とは|LLM入門 5.4
RAGはLangChainやLlamaIndex以外にも、Azure Cognitive SearchやElasticsearchといった既存インフラでも構築可能です。本記事では、それぞれの特徴や適用例、選定ポイントをわかりやすく整理します。
2025-02-25

LlamaIndexとは何か?RAGにおける文書インデックス構築の強みとLangChainとの違い|LLM入門 5.3
LlamaIndexは、RAGの文書処理とインデックス管理に特化したライブラリです。本記事では、LlamaIndexの設計思想と主要機能、LangChainとの違いや併用パターン、実務での活用シーンを丁寧に解説します。
2025-02-24

RAG構築に使える主要ツールとサービスの選び方|LLM入門 第5章
RAGを実装するには、適切なツールやサービスの選定が不可欠です。本章では、OpenAI Embeddings、LangChain、LlamaIndex、Azure Cognitive Searchなど、RAG構築に役立つ代表的な選択肢を比較・解説します。
2025-02-21

RAGに欠かせない埋め込みモデルとは?意味検索を支える技術解説|LLM入門 4.1
RAGにおける意味検索の基盤となるのが「埋め込みモデル(Embedding Model)」です。本記事では、OpenAIやSBERTなど代表的モデルの特徴、選定ポイント、チャンク設計との関係をわかりやすく解説します。
2025-02-17

RAGでFAQ対応を自動化する方法と効果とは?顧客サポートをAIで強化|LLM入門 3.2
RAGを活用したFAQ対応Botは、顧客の自然な質問に対して意味ベースで文書を検索し、正確でわかりやすい回答を生成します。本記事では、EC事業者の導入事例とともに、設計・運用のポイントや導入効果を具体的に解説します。
2025-02-13

ChatGPTだけでは業務に使えない理由とは?|生成AIの限界とRAGの必要性|LLM入門 1.1
ChatGPTは汎用的な質問に対しては強力なツールですが、業務利用では限界があります。本記事では、固有知識の欠如、幻覚(hallucination)、情報の鮮度といった構造的課題を解説し、RAGという新たなアプローチの必要性を明らかにします。
2025-02-03

7.3 マルチモーダルモデルとLLMの統合 | テキスト、画像、音声、映像の融合技術
マルチモーダルモデルとLLMの統合により、テキスト、画像、音声、映像を同時に処理することで、より深い理解と高精度な応答が可能になります。具体的な技術と応用例を紹介します。
2024-11-26

7.2 LLMの省リソーストレーニング技術 | 蒸留、量子化、スパース化、分散トレーニング
LLMのトレーニングにおける省リソース技術を解説。モデル蒸留、量子化、スパース化、分散トレーニングの手法でコストを削減しながら性能を維持する方法を紹介します。
2024-11-25

6.2 LLMモデルのバージョニングとモニタリング | MLflowとPrometheusを活用
LLMモデルの管理を効率化するためのバージョニングとモニタリング手法を解説。MLflowでモデルをバージョン管理し、PrometheusとGrafanaでリアルタイムにパフォーマンスを監視します。
2024-11-22

4.0 LLMのモデル圧縮と推論速度の最適化|効率的なパフォーマンス改善
LLMのモデル圧縮技術と推論速度の最適化手法を解説。量子化、知識蒸留、ONNXを使用したPython実装例で効率的なLLMのデプロイをサポート。
2024-11-12

3.2 LLMのデータクレンジング自動化|Pythonでの効率的なノイズ除去と前処理
LLMのトレーニングにおけるデータクレンジングの重要性とその自動化手法を解説。Pythonコード例で、HTMLタグの除去、ストップワードの削除、正規化などの基本的なクレンジングプロセスを紹介します。
2024-11-11

3.3 LLMのデータロードと前処理パイプライン構築|効率的なデータ処理の自動化
LLMトレーニングに必要なデータロードと前処理パイプラインの構築方法を解説。Pythonコード例を使用し、Pandas、Dask、Scikit-learnでの効率的なデータ処理を紹介します。
2024-11-11

3.1 LLMのサブワードトークナイザーの使用方法|BERTやGPT-2でのトークン化の解説
サブワードトークナイザーを使用したLLMのトークン化方法を解説。Hugging FaceのBERTやGPT-2トークナイザーを使用し、Pythonコード例で具体的な実装方法を紹介します。
2024-11-10

3.0 LLMのトークン化とデータ前処理の自動化|効率的なデータクレンジングと前処理パイプライン
LLMのトレーニングに必要なトークン化とデータ前処理の自動化について解説。Pythonコード例とHugging Faceライブラリを使用し、データクレンジングと効率的な前処理パイプラインの構築方法を紹介します。
2024-11-09

2.3 LLMのトレーニング実行とモデル評価|Pythonによるトレーニングと評価手法
LLMのトレーニングと評価の手順をPythonコード例と共に紹介。Hugging Face Transformersを使用したBERTモデルのトレーニング、評価指標の解説、モデルの保存方法を説明します。
2024-11-08

2.2 LLMのトレーニングデータ準備と前処理|Pythonでのデータクレンジングとトークナイゼーション
LLMのファインチューニングに必要なデータ準備と前処理を解説。Pythonを使用したデータクレンジング、トークナイゼーション、データセット整理の方法を紹介します。
2024-11-07

2.1 Hugging Face Transformersを使ったモデルのファインチューニング|BERTのPython実装例
Hugging FaceのTransformersライブラリを使って、BERTモデルのファインチューニングを行う方法を解説します。Pythonコード例と共に、データ前処理やトレーニング設定のポイントも紹介。
2024-11-06

2.0 LLMモデルのファインチューニング|Hugging Faceを使った効率的な微調整手法
Hugging FaceのTransformersライブラリを使用して、LLMのファインチューニングを行う方法を解説。トレーニングデータの準備から評価までの具体的な手順を紹介。
2024-11-05

1.3 LLM推論APIにおけるキャッシュ戦略|高速化と負荷軽減のためのベストプラクティス
LLM推論APIのパフォーマンスを向上させるキャッシュ戦略について解説。Redisを使った具体的な実装例やキャッシュ最適化のベストプラクティスを紹介します。
2024-11-04

LLM入門:Pythonを用いたLLMアプリケーション構築ガイド | API設計、微調整、デプロイ
Pythonエンジニア向けに、LLM(大規模言語モデル)を活用したアプリケーションの構築方法を徹底解説。FlaskやFastAPIを使ったAPI設計、モデルの微調整(ファインチューニング)、データ前処理の自動化、推論速度の最適化、Docker/Kubernetesを使ったデプロイまで、実践的な内容をカバーします。
2024-11-01

9.2 LLMの実装に向けたリソースと学習の提案 - 効果的なツールとコースの活用
LLM(大規模言語モデル)の実装に必要なリソースや学習方法を紹介します。オープンソースフレームワーク、クラウドプラットフォーム、データセット、オンラインコースなど、実践的なアプローチに必要なリソースを提供します。
2024-10-27

9.1 LLMを理解するための次のステップ - 実践的な学習方法とプロジェクト参加のすすめ
LLM(大規模言語モデル)の基礎を学んだエンジニアが、さらなる学びを進めるための次のステップを紹介します。研究論文の精読、実践的プロジェクトの参加、モデルのカスタマイズや最適化手法について詳しく解説します。
2024-10-26

9.0 LLMとエンジニアが向き合うべきポイント - モデル最適化、バイアス対応、倫理的責任
LLM(大規模言語モデル)を扱うエンジニアが向き合うべき重要なポイントを解説します。モデルの最適化やバイアス軽減、データプライバシーの保護、倫理的責任など、LLM開発における重要な側面について考察します。
2024-10-25

8.2 LLMにおけるバイアスと倫理的課題 - 公平で信頼性の高いAIの実現に向けた取り組み
LLM(大規模言語モデル)が抱えるバイアスと倫理的課題について解説し、データバイアス軽減の技術や説明可能なAI(XAI)の役割を紹介します。より公平で信頼性の高いAIシステムを構築するための今後の展望も説明します。
2024-10-24

8.1 モデルサイズと計算コスト - LLMの効率的な運用とコスト削減の技術
LLM(大規模言語モデル)のモデルサイズと計算コストに関する課題を解説し、量子化やプルーニングなどのモデル圧縮技術や、分散学習を通じたトレーニングコスト削減の方法を紹介します。
2024-10-23

7.1 テキスト生成と自動要約 - LLMによる効率的なコンテンツ生成と要約技術
LLM(大規模言語モデル)を用いたテキスト生成と自動要約技術の仕組みを解説します。ニュース記事の自動生成、報告書の要約、チャットボット応答などの具体的な応用事例も紹介しています。
2024-10-20

7.0 LLMの具体的な応用例 - 自然言語生成、機械翻訳、医療、法律、教育分野の利用事例
LLM(大規模言語モデル)は、自然言語生成、機械翻訳、医療、法律、教育など、様々な分野で幅広く応用されています。具体的な応用事例を通じて、LLMの現実世界での活用方法を紹介します。
2024-10-19

6.2 ミニバッチ学習と計算効率 - 大規模データセットの効率的なトレーニング手法
ミニバッチ学習は、大規模データセットを効率的にトレーニングするための手法です。計算効率の向上、学習率の調整、バッチサイズの最適化など、効率的なモデル構築を支える技術について解説します。
2024-10-18

6.1 データセットの前処理 - トレーニングデータのクリーニングと最適化方法
LLM(大規模言語モデル)のトレーニングに使用されるデータセットの前処理手法を解説します。データのクリーニング、トークン化、バイアス軽減、サンプリングなど、効果的な学習のためのプロセスを紹介します。
2024-10-17

6.0 大規模データセットとLLMトレーニングの実際 - データ収集、前処理、トレーニング方法
LLM(大規模言語モデル)のトレーニングには、膨大なデータセットと計算リソースが必要です。データ収集から前処理、トレーニング手法、評価方法までを詳しく解説します。
2024-10-16

5.0 勾配降下法とモデル最適化 - LLMのトレーニング手法解説
勾配降下法は、LLM(大規模言語モデル)のトレーニングにおける重要な最適化手法です。クロスエントロピー損失やミニバッチ勾配降下法、勾配クリッピングを使ってモデルの精度を向上させる仕組みを解説します。
2024-10-13

4.1 セルフアテンションメカニズム - トランスフォーマーモデルの数理的基盤
トランスフォーマーモデルのセルフアテンションメカニズムについて詳しく解説します。クエリ、キー、バリューを用いた行列演算による単語間の関連度計算と、ソフトマックス関数を使った正規化を説明します。
2024-10-11

4.0 トランスフォーマーの数理 - セルフアテンションとマルチヘッドアテンションの仕組み
トランスフォーマーモデルにおける数理的な仕組みを解説します。セルフアテンションメカニズムの行列演算や、マルチヘッドアテンションによる文脈理解の向上について詳しく説明します。
2024-10-11

3.1 確率論と統計 - LLMにおける言語生成と予測の基礎
確率論と統計は、LLMの言語生成や次の単語の予測において重要な役割を果たします。n-gramモデル、マルコフ連鎖、最大尤度推定(MLE)など、LLMの予測精度を向上させる数理的手法について解説します。
2024-10-09

3.0 LLMの数理モデル - 確率論と線形代数の基礎解説
LLMの動作に深く関わる数理モデルについて解説します。確率論や統計がどのように言語生成に使われ、線形代数が単語埋め込みやベクトル空間での計算にどのように貢献しているのかを詳しく説明します。
2024-10-08

自然言語処理(NLP)とは?|LLM入門 2.3|大規模言語モデルがもたらした進化
NLP(自然言語処理)は、人間の言葉をコンピュータが理解・分析・生成するための技術です。本記事では、テキスト分類・翻訳・要約などのNLPの代表的なタスクと、LLM(大規模言語モデル)の登場によって何が変わったのかを簡潔に解説します。
2024-10-06

2.1 LLM(大規模言語モデル)とは、人間の言葉を“理解しようとする”AIのしくみ
自然言語処理(NLP)の基本概念と、その数学的手法を解説します。確率論、統計、線形代数を利用したアプローチを通じて、NLPがどのようにテキストを理解・生成し、LLMに応用されているのかを紹介します。
2024-10-06

2.0 LLMの基本 ―「なぜLLMはここまで注目されているのか?」を整理
本記事では、LLMの基礎概念として、自然言語処理(NLP)の概要とトランスフォーマーモデルの仕組みについて詳しく説明します。LLMがどのようにして膨大なデータを処理し、高精度な結果を出すのかを理解します。
2024-10-06

1.4 線形代数の感覚をつかむ:ベクトルと空間のイメージ
大規模言語モデル(LLM)は、単語の意味を「ベクトル」として数値で扱っています。本記事では、ベクトルとは何か、なぜ言葉を数で表現するのかをやさしく解説します。LLMの“頭の中”を覗いてみましょう。
2024-10-04

7.5 LLMの法的規制とガバナンス:プライバシー保護と倫理対応の重要性
大規模言語モデル(LLM)の法的規制とガバナンスについて解説。プライバシー保護やデータ規制、ガバナンス体制の構築、各国の法的動向に対応したLLM運用のポイントを紹介します。
2024-10-02
カテゴリー
検索履歴
会話履歴 690
エンジニア向け 382
マルコフ連鎖 364
注意メカニズム 357
自動要約 356
大規模言語モデル 354
生成型要約 353
NLP トランスフォーマー 349
パーソナライズドコンテンツ 347
教育AI 344
トークン化 342
言語モデル 339
ミニバッチ学習 335
数学的アプローチ 334
データ前処理 328
GPT テキスト生成 326
クロスエントロピー損失 318
LLM 要約 317
LLM テキスト生成 316
セルフアテンション 312
ロス計算 308
GPT-2 テキスト生成 305
トレーニング 305
バイアス 問題 304
線形代数 301
自動翻訳 299
自然言語処理 翻訳 295
コード生成 294
バッチサイズ 293
LLM リアルタイム処理 289
チーム

任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。

下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。