LLM入門


合計 21 件の記事があります。 現在 1 ページ中の 1 ページ目です。

人格・役割・意図の設計とは?|MCP入門 7.4|AIの“存在”をプロトコルで定義する方法

AIが人格を持ち、役割を柔軟に切り替え、意図を理解して発話する時代が始まろうとしています。本記事では、MCPによってこうした構成要素をどのように設計・再現し、対話的存在としてのAIを実現できるのかを解説します。
2025-04-05

OpenAI GPT、Claude、Geminiの文脈処理とは?|MCP入門 7.1|各社LLMの設計思想とMCPの位置づけ

各社LLMは文脈や状態の扱い方に独自のアプローチを持っています。本記事ではOpenAI GPTのSystem MessageとMemory API、Claudeの自己内省型設計、Geminiのマルチモーダル連携を比較し、MCPが果たす中立的な役割を明らかにします。
2025-04-02

ストラクチャード・コンテキスト vs ナチュラル・プロンプティングとは?|MCP入門 6.3|構造化と柔軟性を両立するプロンプト設計

生成AIに文脈を渡すには、JSON形式の構造化データか自然言語プロンプトか、どちらが適切か。本記事では、MCP設計において“ストラクチャード・コンテキスト”と“ナチュラル・プロンプティング”の違いと併用戦略を詳しく解説します。
2025-03-30

タスク分離とセッション切り替えとは?|MCP入門 5.2|AI応答の誤りを防ぐ文脈設計

1人のユーザーが複数の目的でAIと対話する時、文脈の混在は誤応答や情報漏洩の原因になります。MCPによるセッションIDやタスクタグの活用により、タスク単位の文脈を安全かつ自然に切り替える方法を詳しく解説します。
2025-03-24

外部ツールとのプロトコル統合とは?|MCP入門 4.4|カレンダー・チャット・CRMをAIと連携する設計法

SlackやGoogle Calendar、Salesforceなどの外部ツールと生成AIを連携し、チャットから予定作成や顧客データ操作を行う方法を解説。MCPを活用し、文脈の更新・アクション提案・認証設計まで詳しく紹介します。
2025-03-21

マルチセッションとユーザー管理とは?|MCP入門 4.3|生成AIで複数会話と文脈を自在に制御する方法

一人のユーザーが複数の会話・プロジェクト・目的を同時に扱う時代において、セッション分離と状態復元は不可欠です。本章では、MCPを活用したマルチセッション設計、履歴管理、テンプレート切替、セキュリティまでを詳しく解説します。
2025-03-20

複数モデル(LLM)の使い分け設計とは?|MCP入門 4.2|GPT-4・Claude・Geminiをタスクごとに最適活用

GPT-4、Claude、Geminiなど複数のLLMを目的に応じて使い分ける設計は、生成AIの品質・速度・コスト最適化に不可欠です。本節では、MCPによる役割分担、タスク別・属性別・フォールバック・ワークフロー設計を詳しく解説します。
2025-03-19

RAGとの統合設計とは?|MCP入門 4.1|生成AIの文脈構築を強化する検索補助付き設計

RAG(検索補助付き生成)は、生成AIに最新情報や社内知識を与える鍵です。本章では、MCPとの接続方法、FAQ注入、要約統合、テンプレートとの連携など、RAGとコンテキスト設計を統合する具体的手法を紹介します。
2025-03-18

ユーザー状態とモデル状態の同期とは?|MCP入門 3.4|生成AIの一貫した応答設計

生成AIの出力の一貫性を保つには、ユーザーとモデルの状態を同期させることが重要です。MCPでは、セッションメモリ、タスク管理、ステートマシン、感情トラッキングなどを活用して文脈と目的を揃える設計が求められます。
2025-03-16

テンプレートとスロットの設計とは?|MCP入門 3.3|生成AIの柔軟で安全な文脈構築法

生成AIの出力に一貫性と安全性を持たせるには、テンプレートとスロット設計が重要です。本章では、プロンプトテンプレート、文脈スロット化、入力サニタイズなど、再利用とセキュリティを両立する具体的なパターンを解説します。
2025-03-15

コンテキストマネジメントとは?|MCP入門 3.2|履歴と外部情報を活かす生成AI設計

生成AIの出力品質は、どんな文脈や履歴情報を参照しているかで決まります。本章では、チャット履歴要約・外部ベクター検索・ユーザープロファイル統合といったMCP設計の基礎を丁寧に解説します。
2025-03-14

システムインストラクションの設計パターンとは?|MCP入門 3.1|生成AIの人格と振る舞いの設計

生成AIの出力に一貫性と目的を持たせるには、システムインストラクションの設計が重要です。MCPにおける役割、トーン、ルール、タスク駆動型など、代表的な設計パターンをわかりやすく解説します。
2025-03-13

プロンプトとコンテクストの違いとは?|MCP入門 1.2|生成AIにおける役割と設計の考え方

生成AIを効果的に活用するには、Prompt(命令)とContext(文脈)を分けて設計する必要があります。MCP(Model Context Protocol)の基礎として、この2つの違いと役割、実装への考え方を詳しく解説します。
2025-03-04

5.0 LLMを活用したチャットボット構築ガイド|Pythonでの実装例付き

LLMを活用してチャットボットを構築する方法を解説。Pythonでの実装例と、スケーラブルなデプロイ手法も紹介。
2024-11-16

9.2 LLMの実装に向けたリソースと学習の提案 - 効果的なツールとコースの活用

LLM(大規模言語モデル)の実装に必要なリソースや学習方法を紹介します。オープンソースフレームワーク、クラウドプラットフォーム、データセット、オンラインコースなど、実践的なアプローチに必要なリソースを提供します。
2024-10-27

9.1 LLMを理解するための次のステップ - 実践的な学習方法とプロジェクト参加のすすめ

LLM(大規模言語モデル)の基礎を学んだエンジニアが、さらなる学びを進めるための次のステップを紹介します。研究論文の精読、実践的プロジェクトの参加、モデルのカスタマイズや最適化手法について詳しく解説します。
2024-10-26

7.2 質問応答システムと機械翻訳 - LLMによる自然言語処理の応用技術

LLM(大規模言語モデル)を活用した質問応答システムと機械翻訳の技術について詳しく解説します。カスタマーサポートの自動化、国際ビジネス、観光業界などでの具体的な応用例を紹介します。
2024-10-21

7.0 LLMの具体的な応用例 - 自然言語生成、機械翻訳、医療、法律、教育分野の利用事例

LLM(大規模言語モデル)は、自然言語生成、機械翻訳、医療、法律、教育など、様々な分野で幅広く応用されています。具体的な応用事例を通じて、LLMの現実世界での活用方法を紹介します。
2024-10-19

4.2 LLMによる質問応答システム | 高精度な回答生成とその応用例

LLM(大規模言語モデル)を活用した質問応答システムの仕組みと応用例をエンジニア向けに解説。カスタマーサポート、FAQ、検索エンジン強化など、様々な分野での実際の使用ケースを紹介。
2024-09-17

4.0 LLMの応用例 | テキスト生成、質問応答、翻訳、コード生成での活用

LLM(大規模言語モデル)の応用例をエンジニア向けに解説。テキスト生成、質問応答システム、翻訳、要約、コード生成など、LLMが様々な分野でどのように活用されているかを詳述します。
2024-09-15

第1章 LLMって何?AIが文章を“理解して書く”時代のはじまり

LLM(大規模言語モデル)の基本的な定義、自然言語処理における役割、そして従来の機械学習モデルとの違いを解説。LLMの特徴とその応用例をエンジニア向けに詳しく紹介します。
2024-09-02