LLM入門


合計 73 件の記事があります。 現在 2 ページ中の 1 ページ目です。

チャットボットの履歴管理とは?|MCP入門 5.1|スコープ制御で精度とコストを最適化する設計

生成AIチャットボットの応答品質は、会話履歴の設計に大きく左右されます。本記事では、MCPを活用して履歴の粒度・要約・トピック切り替えを制御し、自然かつ効率的なチャット体験を作る方法を解説します。
2025-03-23

外部ツールとのプロトコル統合とは?|MCP入門 4.4|カレンダー・チャット・CRMをAIと連携する設計法

SlackやGoogle Calendar、Salesforceなどの外部ツールと生成AIを連携し、チャットから予定作成や顧客データ操作を行う方法を解説。MCPを活用し、文脈の更新・アクション提案・認証設計まで詳しく紹介します。
2025-03-21

マルチセッションとユーザー管理とは?|MCP入門 4.3|生成AIで複数会話と文脈を自在に制御する方法

一人のユーザーが複数の会話・プロジェクト・目的を同時に扱う時代において、セッション分離と状態復元は不可欠です。本章では、MCPを活用したマルチセッション設計、履歴管理、テンプレート切替、セキュリティまでを詳しく解説します。
2025-03-20

RAGとの統合設計とは?|MCP入門 4.1|生成AIの文脈構築を強化する検索補助付き設計

RAG(検索補助付き生成)は、生成AIに最新情報や社内知識を与える鍵です。本章では、MCPとの接続方法、FAQ注入、要約統合、テンプレートとの連携など、RAGとコンテキスト設計を統合する具体的手法を紹介します。
2025-03-18

テンプレートとスロットの設計とは?|MCP入門 3.3|生成AIの柔軟で安全な文脈構築法

生成AIの出力に一貫性と安全性を持たせるには、テンプレートとスロット設計が重要です。本章では、プロンプトテンプレート、文脈スロット化、入力サニタイズなど、再利用とセキュリティを両立する具体的なパターンを解説します。
2025-03-15

コンテキストマネジメントとは?|MCP入門 3.2|履歴と外部情報を活かす生成AI設計

生成AIの出力品質は、どんな文脈や履歴情報を参照しているかで決まります。本章では、チャット履歴要約・外部ベクター検索・ユーザープロファイル統合といったMCP設計の基礎を丁寧に解説します。
2025-03-14

システムインストラクションの設計パターンとは?|MCP入門 3.1|生成AIの人格と振る舞いの設計

生成AIの出力に一貫性と目的を持たせるには、システムインストラクションの設計が重要です。MCPにおける役割、トーン、ルール、タスク駆動型など、代表的な設計パターンをわかりやすく解説します。
2025-03-13

Model Context Protocol(MCP)とは何か?|MCP入門 第2章|生成AIの文脈設計の新常識

MCP(Model Context Protocol)とは、生成AIにおける文脈と状態を体系的に制御・再現するための設計原則です。本章ではMCPの定義、従来のプロンプト設計との違い、状態設計による一貫性の向上、実装例などをわかりやすく解説します。
2025-03-07

RAGは本当に不要になるのか?長文対応LLM時代の検索戦略を再考する|LLM入門 7.3

GPT-4 128kやClaude 2の登場により、「検索せず全文渡す」構成が可能になってきました。本記事ではRetrieval不要論の背景と現実的な限界、そしてRAGの再定義について丁寧に解説します。
2025-03-06

モデルにとっての記憶とは何か?|MCP入門 1.4|生成AIと文脈再現の技術

生成AIは本当に記憶しているのか?実は、AIの“記憶”は文脈の再構築にすぎません。エフェメラルメモリ・永続メモリ・役割設計など、MCP(Model Context Protocol)での記憶制御の仕組みをわかりやすく解説します。
2025-03-06

RAGを強化するハイブリッド検索とMulti-Vector戦略とは?検索の多視点化と精度向上の設計|LLM入門 7.2

意味検索とキーワード検索を組み合わせるハイブリッド検索、複数の視点から検索するMulti-Vector RAG。どちらもRetrieverの精度と柔軟性を高める先進的な手法です。本記事では構成・効果・導入の注意点を解説します。
2025-03-05

コンテキストウィンドウとは?生成AIにおける文脈の限界とMCP設計|MCP入門 1.3

生成AIが扱える“文脈”には上限があります。それがコンテキストウィンドウです。トークン数の制限とは何か、なぜ応答が急に崩れるのか、MCP(Model Context Protocol)における設計の工夫まで、丁寧に解説します。
2025-03-05

RAGにおける幻覚とは?情報の過不足を防ぎ生成精度を高める設計法|LLM入門 7.1

RAG構成でも、LLMによる幻覚(hallucination)は発生します。本記事では、Retriever精度、プロンプト設計、出典明示などにより幻覚を抑える具体的な方法と、検知・評価の技術までを丁寧に解説します。
2025-03-04

プロンプトとコンテクストの違いとは?|MCP入門 1.2|生成AIにおける役割と設計の考え方

生成AIを効果的に活用するには、Prompt(命令)とContext(文脈)を分けて設計する必要があります。MCP(Model Context Protocol)の基礎として、この2つの違いと役割、実装への考え方を詳しく解説します。
2025-03-04

RAG設計におけるトークン制限への対処法とは?情報量と生成精度を両立する工夫|LLM入門 6.4

生成AIにはトークン数の上限という物理的な制約があります。本記事では、Retriever出力やプロンプトを設計する際に考慮すべきトークン制限と、その中で最も有効な情報を渡すための工夫と設計指針を解説します。
2025-03-02

モデルコンテキストの基礎|MCP入門 第1章|生成AIが文脈を理解する仕組み

生成AIやChatGPTの出力がなぜ“賢く”見えるのか?その鍵は文脈にあります。MCP(Model Context Protocol)の理解に必要な、AIと文脈の関係、プロンプトとの違い、コンテキストウィンドウの制約などをわかりやすく解説します。
2025-03-02

RAGにおけるプロンプト合成の設計パターンとは?文脈統合で生成精度を高める方法|LLM入門 6.3

Retrieverで得た情報をLLMにどう渡すかが、RAGの成否を分けます。本記事では、文書構造ごとのプロンプト合成パターンとその効果、生成品質を高めるための設計指針を具体的に解説します。
2025-03-01

RAGの設計力とは?プロンプトと文脈の最適化で生成精度を高める方法|LLM入門 第6章

高性能なLLMと正確な検索結果を活かす鍵は、プロンプトと文脈の設計にあります。本章では、RAGの実運用で成果を出すための構成・整形・トークン最適化の具体的な手法を、設計者の視点から詳しく解説します。
2025-02-26

LlamaIndexとは何か?RAGにおける文書インデックス構築の強みとLangChainとの違い|LLM入門 5.3

LlamaIndexは、RAGの文書処理とインデックス管理に特化したライブラリです。本記事では、LlamaIndexの設計思想と主要機能、LangChainとの違いや併用パターン、実務での活用シーンを丁寧に解説します。
2025-02-24

LangChainでRAGを構築する方法とは?RetrieverからLLM連携まで徹底解説|LLM入門 5.2

LangChainはRAG構築において、Retriever・LLM・プロンプトを一貫してつなぐフレームワークです。本記事では、各モジュールの役割と構成例、導入のメリット・注意点までを、実装の視点からわかりやすく解説します。
2025-02-23

OpenAI Embeddingsとベクトル検索エンジンの連携方法|RAG構築の基本|LLM入門 5.1

RAGを構築する上で基本となるのが、OpenAIの埋め込みモデルとベクトルストアの組み合わせです。本記事では、text-embedding-ada-002の特徴と、FAISSやPineconeとの連携設計、実装時の注意点を詳しく解説します。
2025-02-22

セマンティック検索とキーワード検索の違いとは?RAGの精度を左右する検索技術|LLM入門 4.4

RAGでは従来のキーワード検索ではなく、意味ベースのセマンティック検索が活用されます。本記事では、両者の違いと特性、ハイブリッド検索の活用法までを比較しながら、実務での使い分け方を丁寧に解説します。
2025-02-20

RAGの回答精度を左右するコンテキスト整形とは?LLMへの最適な情報の渡し方|LLM入門 4.3

RAGにおいてRetrieverが抽出した情報をどのように整形し、LLMに渡すかは、出力の質に直結します。本記事では、プロンプト設計・チャンク構造・トークン最適化など、回答品質を高めるための整形技術を詳しく解説します。
2025-02-19

RAGに欠かせない埋め込みモデルとは?意味検索を支える技術解説|LLM入門 4.1

RAGにおける意味検索の基盤となるのが「埋め込みモデル(Embedding Model)」です。本記事では、OpenAIやSBERTなど代表的モデルの特徴、選定ポイント、チャンク設計との関係をわかりやすく解説します。
2025-02-17

RAG導入の実践ステップと落とし穴とは?PoCから本番運用までの道筋|LLM入門 3.4

RAGはPoC(概念実証)では効果を実感しやすい一方で、実運用への移行には注意点が多数あります。本記事では、導入フェーズにおけるステップと、技術・運用・責任設計の観点から見た“落とし穴”とその回避法を解説します。
2025-02-15

RAGで専門文書を活用する方法|法務・医療・教育分野での事例と効果|LLM入門 3.3

法律文書、医療ガイドライン、教育要綱など、専門性の高い情報を誰もが使いやすくするにはどうすればよいか。本記事では、RAGを活用して専門文書を自然言語で引き出す仕組みと、実際の活用事例を丁寧に解説します。
2025-02-14

RAGでFAQ対応を自動化する方法と効果とは?顧客サポートをAIで強化|LLM入門 3.2

RAGを活用したFAQ対応Botは、顧客の自然な質問に対して意味ベースで文書を検索し、正確でわかりやすい回答を生成します。本記事では、EC事業者の導入事例とともに、設計・運用のポイントや導入効果を具体的に解説します。
2025-02-13

RAGで社内ナレッジBotを構築する方法と導入効果|LLM入門 3.1

就業規則や業務手順が整備されていても、社員が情報を引き出せない現実があります。本記事では、RAGを活用して社内文書に基づくナレッジBotを構築し、社内問い合わせ削減と業務効率向上を実現した事例を紹介します。
2025-02-12

RAGの活用事例と導入効果とは?業務改善を実現する4つのユースケース|LLM入門 第3章

RAG(Retrieval-Augmented Generation)は、社内ナレッジBotやFAQ応答、自動応答の高度化に活用されています。本章では、実際のユースケースと導入プロセス、効果、注意点までを具体的に紹介し、実務に役立つ導入視点を提供します。
2025-02-11

RAGで業務AIを強化する方法とは?|LLM入門:検索と統合の仕組みを解説

RAG(Retrieval-Augmented Generation)は、大規模言語モデルに社内ナレッジやFAQを統合し、業務に使えるAIを構築する鍵です。本記事ではRAGの仕組み、活用例、導入のステップまで、わかりやすく解説します。
2025-02-01

7.2 LLMの省リソーストレーニング技術 | 蒸留、量子化、スパース化、分散トレーニング

LLMのトレーニングにおける省リソース技術を解説。モデル蒸留、量子化、スパース化、分散トレーニングの手法でコストを削減しながら性能を維持する方法を紹介します。
2024-11-25

7.1 LLMの大規模モデル進化 | 性能向上と技術的課題

LLMの大規模モデル化による性能向上と、計算リソースやトレーニングコストの課題を解説。エンジニアが対応すべき技術と今後の展望を紹介します。
2024-11-25

6.2 LLMモデルのバージョニングとモニタリング | MLflowとPrometheusを活用

LLMモデルの管理を効率化するためのバージョニングとモニタリング手法を解説。MLflowでモデルをバージョン管理し、PrometheusとGrafanaでリアルタイムにパフォーマンスを監視します。
2024-11-22

6.0 LLMアプリケーションのデプロイとCI/CDパイプラインの構築

LLMアプリケーションをDockerとKubernetesでデプロイし、GitHub Actionsを使用したCI/CDパイプラインの構築方法を解説します。スケーラブルな運用環境の実現に役立つ情報です。
2024-11-20

4.3 LLMのモデル圧縮技術|知識蒸留、量子化、プルーニングの解説

知識蒸留、量子化、プルーニングなどのモデル圧縮技術を使い、LLMの計算コストと推論速度を改善する方法を解説します。Pythonの実装例も紹介。
2024-11-15

4.2 LLMの推論速度を最適化する方法|バッチ推論と半精度推論の活用

LLMの推論速度を改善するための技術を解説。バッチ推論、ONNX Runtime、半精度推論(FP16)など、効率的な推論手法とその実装例を紹介します。
2024-11-14

4.1 LLMのモデル圧縮技術|効率的な量子化と知識蒸留

LLMのモデル圧縮技術を解説。量子化、知識蒸留、プルーニングの実装例を紹介し、推論速度とリソース効率を向上させる方法を学びます。
2024-11-13

4.0 LLMのモデル圧縮と推論速度の最適化|効率的なパフォーマンス改善

LLMのモデル圧縮技術と推論速度の最適化手法を解説。量子化、知識蒸留、ONNXを使用したPython実装例で効率的なLLMのデプロイをサポート。
2024-11-12

3.2 LLMのデータクレンジング自動化|Pythonでの効率的なノイズ除去と前処理

LLMのトレーニングにおけるデータクレンジングの重要性とその自動化手法を解説。Pythonコード例で、HTMLタグの除去、ストップワードの削除、正規化などの基本的なクレンジングプロセスを紹介します。
2024-11-11

3.3 LLMのデータロードと前処理パイプライン構築|効率的なデータ処理の自動化

LLMトレーニングに必要なデータロードと前処理パイプラインの構築方法を解説。Pythonコード例を使用し、Pandas、Dask、Scikit-learnでの効率的なデータ処理を紹介します。
2024-11-11

3.1 LLMのサブワードトークナイザーの使用方法|BERTやGPT-2でのトークン化の解説

サブワードトークナイザーを使用したLLMのトークン化方法を解説。Hugging FaceのBERTやGPT-2トークナイザーを使用し、Pythonコード例で具体的な実装方法を紹介します。
2024-11-10

3.0 LLMのトークン化とデータ前処理の自動化|効率的なデータクレンジングと前処理パイプライン

LLMのトレーニングに必要なトークン化とデータ前処理の自動化について解説。Pythonコード例とHugging Faceライブラリを使用し、データクレンジングと効率的な前処理パイプラインの構築方法を紹介します。
2024-11-09

2.3 LLMのトレーニング実行とモデル評価|Pythonによるトレーニングと評価手法

LLMのトレーニングと評価の手順をPythonコード例と共に紹介。Hugging Face Transformersを使用したBERTモデルのトレーニング、評価指標の解説、モデルの保存方法を説明します。
2024-11-08

2.2 LLMのトレーニングデータ準備と前処理|Pythonでのデータクレンジングとトークナイゼーション

LLMのファインチューニングに必要なデータ準備と前処理を解説。Pythonを使用したデータクレンジング、トークナイゼーション、データセット整理の方法を紹介します。
2024-11-07

1.3 LLM推論APIにおけるキャッシュ戦略|高速化と負荷軽減のためのベストプラクティス

LLM推論APIのパフォーマンスを向上させるキャッシュ戦略について解説。Redisを使った具体的な実装例やキャッシュ最適化のベストプラクティスを紹介します。
2024-11-04

1.2 LLM推論APIのスケーリング|水平スケーリング、ロードバランシング、キャッシュ戦略の実装

LLM推論APIのパフォーマンス向上方法を紹介します。水平スケーリング、ロードバランシング、Redisキャッシュ戦略を使用した効率的なAPI設計の実装例を解説。
2024-11-04

LLM入門:Pythonを用いたLLMアプリケーション構築ガイド | API設計、微調整、デプロイ

Pythonエンジニア向けに、LLM(大規模言語モデル)を活用したアプリケーションの構築方法を徹底解説。FlaskやFastAPIを使ったAPI設計、モデルの微調整(ファインチューニング)、データ前処理の自動化、推論速度の最適化、Docker/Kubernetesを使ったデプロイまで、実践的な内容をカバーします。
2024-11-01

9.0 LLMとエンジニアが向き合うべきポイント - モデル最適化、バイアス対応、倫理的責任

LLM(大規模言語モデル)を扱うエンジニアが向き合うべき重要なポイントを解説します。モデルの最適化やバイアス軽減、データプライバシーの保護、倫理的責任など、LLM開発における重要な側面について考察します。
2024-10-25

8.2 LLMにおけるバイアスと倫理的課題 - 公平で信頼性の高いAIの実現に向けた取り組み

LLM(大規模言語モデル)が抱えるバイアスと倫理的課題について解説し、データバイアス軽減の技術や説明可能なAI(XAI)の役割を紹介します。より公平で信頼性の高いAIシステムを構築するための今後の展望も説明します。
2024-10-24

8.1 モデルサイズと計算コスト - LLMの効率的な運用とコスト削減の技術

LLM(大規模言語モデル)のモデルサイズと計算コストに関する課題を解説し、量子化やプルーニングなどのモデル圧縮技術や、分散学習を通じたトレーニングコスト削減の方法を紹介します。
2024-10-23