LLM入門
このページでは、AI技術に関心のある方のために、LLM(大規模言語モデル)の基礎から応用までをわかりやすく解説します。
W3CのAI Context仕様とは?|MCP入門 7.3|文脈の国際標準化とMCPの役割
AIの意思決定や会話文脈を明示的に設計するため、W3CではAI Context仕様の標準化が進んでいます。本記事ではその動向と、MCPとの親和性や将来のマッピング可能性について詳しく解説します。
2025-04-04OpenAI GPT、Claude、Geminiの文脈処理とは?|MCP入門 7.1|各社LLMの設計思想とMCPの位置づけ
各社LLMは文脈や状態の扱い方に独自のアプローチを持っています。本記事ではOpenAI GPTのSystem MessageとMemory API、Claudeの自己内省型設計、Geminiのマルチモーダル連携を比較し、MCPが果たす中立的な役割を明らかにします。
2025-04-02MCPの未来と標準化への道とは?|MCP入門 7.0|AI文脈設計の次なるステージとグローバル接続性
Model Context Protocol(MCP)はAIの文脈理解と再現性を支える設計思想です。最終章では、各社LLMとの親和性、Memory API連携、W3C標準化、人格と役割の制御まで、MCPの未来像を展望します。
2025-04-01システムメッセージ vs ユーザープロンプトとは?|MCP入門 6.2|LLMの人格と応答品質を分ける設計手法
プロンプトには“誰が話すか”という役割の違いがあります。本記事では、システムメッセージとユーザープロンプトの違いを明確化し、モデルの態度・目的意識・人格形成に与える影響、MCP設計への応用を詳しく解説します。
2025-03-29複数モデル(LLM)の使い分け設計とは?|MCP入門 4.2|GPT-4・Claude・Geminiをタスクごとに最適活用
GPT-4、Claude、Geminiなど複数のLLMを目的に応じて使い分ける設計は、生成AIの品質・速度・コスト最適化に不可欠です。本節では、MCPによる役割分担、タスク別・属性別・フォールバック・ワークフロー設計を詳しく解説します。
2025-03-19システムインストラクションの設計パターンとは?|MCP入門 3.1|生成AIの人格と振る舞いの設計
生成AIの出力に一貫性と目的を持たせるには、システムインストラクションの設計が重要です。MCPにおける役割、トーン、ルール、タスク駆動型など、代表的な設計パターンをわかりやすく解説します。
2025-03-13MCP実装の基本設計パターンとは?|MCP入門 第3章|生成AIをプロダクトに組み込むための考え方
MCP(Model Context Protocol)をプロダクトや業務システムに実装するには、文脈・状態・履歴・ユーザー情報の扱い方を設計パターンとして整理する必要があります。本章ではMCPの構造化・再現性・スケーラビリティを支える4つの設計手法を紹介します。
2025-03-12OpenAI Function CallingとMCPの関係とは?|MCP入門 2.4|生成AIの構造化出力と実装設計
OpenAIのFunction Callingは、生成AIが構造化された出力を返す仕組みです。MCP(Model Context Protocol)の文脈・状態設計と深く関係し、再現性や拡張性の高いAI実装を支えます。本節ではその原理と設計のポイントを丁寧に解説します。
2025-03-11MCPによる状態制御と再現性の向上とは?|MCP入門 2.3|生成AIの安定設計の鍵
生成AIをプロダクトとして安定運用するには、出力の一貫性と再現性が不可欠です。MCP(Model Context Protocol)は文脈と状態を構造化し、モデルの振る舞いを制御・再現可能にします。設計原則から具体例まで詳しく解説。
2025-03-10Model Context Protocol(MCP)とは何か?|MCP入門 第2章|生成AIの文脈設計の新常識
MCP(Model Context Protocol)とは、生成AIにおける文脈と状態を体系的に制御・再現するための設計原則です。本章ではMCPの定義、従来のプロンプト設計との違い、状態設計による一貫性の向上、実装例などをわかりやすく解説します。
2025-03-07RAG設計におけるトークン制限への対処法とは?情報量と生成精度を両立する工夫|LLM入門 6.4
生成AIにはトークン数の上限という物理的な制約があります。本記事では、Retriever出力やプロンプトを設計する際に考慮すべきトークン制限と、その中で最も有効な情報を渡すための工夫と設計指針を解説します。
2025-03-02Azure Cognitive SearchやElasticでRAGを実現する方法|既存検索基盤を活かす構成とは|LLM入門 5.4
RAGはLangChainやLlamaIndex以外にも、Azure Cognitive SearchやElasticsearchといった既存インフラでも構築可能です。本記事では、それぞれの特徴や適用例、選定ポイントをわかりやすく整理します。
2025-02-25LangChainでRAGを構築する方法とは?RetrieverからLLM連携まで徹底解説|LLM入門 5.2
LangChainはRAG構築において、Retriever・LLM・プロンプトを一貫してつなぐフレームワークです。本記事では、各モジュールの役割と構成例、導入のメリット・注意点までを、実装の視点からわかりやすく解説します。
2025-02-23OpenAI Embeddingsとベクトル検索エンジンの連携方法|RAG構築の基本|LLM入門 5.1
RAGを構築する上で基本となるのが、OpenAIの埋め込みモデルとベクトルストアの組み合わせです。本記事では、text-embedding-ada-002の特徴と、FAISSやPineconeとの連携設計、実装時の注意点を詳しく解説します。
2025-02-22RAG構築に使える主要ツールとサービスの選び方|LLM入門 第5章
RAGを実装するには、適切なツールやサービスの選定が不可欠です。本章では、OpenAI Embeddings、LangChain、LlamaIndex、Azure Cognitive Searchなど、RAG構築に役立つ代表的な選択肢を比較・解説します。
2025-02-21セマンティック検索とキーワード検索の違いとは?RAGの精度を左右する検索技術|LLM入門 4.4
RAGでは従来のキーワード検索ではなく、意味ベースのセマンティック検索が活用されます。本記事では、両者の違いと特性、ハイブリッド検索の活用法までを比較しながら、実務での使い分け方を丁寧に解説します。
2025-02-20RAGに欠かせない埋め込みモデルとは?意味検索を支える技術解説|LLM入門 4.1
RAGにおける意味検索の基盤となるのが「埋め込みモデル(Embedding Model)」です。本記事では、OpenAIやSBERTなど代表的モデルの特徴、選定ポイント、チャンク設計との関係をわかりやすく解説します。
2025-02-17RAGを構築するための技術要素とは?Embeddingから検索・統合まで解説|LLM入門 第4章
RAG(Retrieval-Augmented Generation)を構築・運用するには、埋め込みモデル、ベクトル検索エンジン、プロンプト整形などの技術が欠かせません。本章では、主要な技術コンポーネントとその選定ポイントを体系的に解説します。
2025-02-16RAGの中核構造:RetrieverとGeneratorの役割と分離設計|LLM入門 2.2
RAGにおいて、Retriever(検索部)とGenerator(生成部)の明確な分離は高精度な応答生成の鍵となります。本記事では、それぞれの役割、構造、設計上のメリットについて詳しく解説し、柔軟で拡張性のあるAI構築のための基盤を紹介します。
2025-02-08RAGで業務AIを強化する方法とは?|LLM入門:検索と統合の仕組みを解説
RAG(Retrieval-Augmented Generation)は、大規模言語モデルに社内ナレッジやFAQを統合し、業務に使えるAIを構築する鍵です。本記事ではRAGの仕組み、活用例、導入のステップまで、わかりやすく解説します。
2025-02-015.3 NLUとNLGの活用|高度なチャットボットの設計と実装
NLU(自然言語理解)とNLG(自然言語生成)の技術を使用して、よりインテリジェントなチャットボットを構築する方法をPythonの実装例とともに解説。
2024-11-195.2 コンテキストを保持したマルチターン会話の実装|LLM活用ガイド
LLMを用いたコンテキストを保持したマルチターン会話の実装方法を紹介。FlaskとRedisを使用したスケーラブルなチャットボットの設計とPythonのサンプルコードを掲載。
2024-11-185.1 LLMを活用したチャットボットの基本アーキテクチャ|Python実装ガイド
LLMを活用したチャットボットの基本アーキテクチャとPythonによる簡単なAPI実装例を紹介。FlaskやFastAPIを使用したスケーラブルな設計方法を解説。
2024-11-175.0 LLMを活用したチャットボット構築ガイド|Pythonでの実装例付き
LLMを活用してチャットボットを構築する方法を解説。Pythonでの実装例と、スケーラブルなデプロイ手法も紹介。
2024-11-16
9.1 LLMを理解するための次のステップ - 実践的な学習方法とプロジェクト参加のすすめ
LLM(大規模言語モデル)の基礎を学んだエンジニアが、さらなる学びを進めるための次のステップを紹介します。研究論文の精読、実践的プロジェクトの参加、モデルのカスタマイズや最適化手法について詳しく解説します。
2024-10-26
4.0 トランスフォーマーの数理 - セルフアテンションとマルチヘッドアテンションの仕組み
トランスフォーマーモデルにおける数理的な仕組みを解説します。セルフアテンションメカニズムの行列演算や、マルチヘッドアテンションによる文脈理解の向上について詳しく説明します。
2024-10-11
3.2 線形代数とベクトル空間 - LLMにおける単語埋め込みの数理的基盤
線形代数はLLM(大規模言語モデル)の数理的基盤です。単語の埋め込みやベクトル空間内での操作、コサイン類似度を用いた単語の関係性の解析について詳しく解説します。
2024-10-10
3.1 確率論と統計 - LLMにおける言語生成と予測の基礎
確率論と統計は、LLMの言語生成や次の単語の予測において重要な役割を果たします。n-gramモデル、マルコフ連鎖、最大尤度推定(MLE)など、LLMの予測精度を向上させる数理的手法について解説します。
2024-10-09
3.0 LLMの数理モデル - 確率論と線形代数の基礎解説
LLMの動作に深く関わる数理モデルについて解説します。確率論や統計がどのように言語生成に使われ、線形代数が単語埋め込みやベクトル空間での計算にどのように貢献しているのかを詳しく説明します。
2024-10-08
2.1 LLM(大規模言語モデル)とは、人間の言葉を“理解しようとする”AIのしくみ
自然言語処理(NLP)の基本概念と、その数学的手法を解説します。確率論、統計、線形代数を利用したアプローチを通じて、NLPがどのようにテキストを理解・生成し、LLMに応用されているのかを紹介します。
2024-10-06
6.2 Pythonを使ったLLM実装例 | Hugging Face, OpenAI, Google Cloud, Azureを活用したテキスト生成
Pythonを使ってLLM(大規模言語モデル)を簡単に実装する方法をエンジニア向けに解説。Hugging Face、OpenAI、Google Cloud、Azureを使用したテキスト生成や感情分析の実装例を紹介します。
2024-09-26
6.1 LLMを試すためのオープンソースツールとAPIの紹介 | Hugging Face, OpenAI, Google Cloud, Azure
LLM(大規模言語モデル)を試すための主要なオープンソースツールやAPIをエンジニア向けに解説。Hugging Face、OpenAI、Google Cloud AI、Microsoft Azure Cognitive Servicesの特徴と使用方法を紹介し、簡単な実装例も提供。
2024-09-25
6.0 実際にLLMを試してみる | オープンソースツールと簡単な実装例
LLM(大規模言語モデル)を実際に試すためのオープンソースツールやAPIを紹介し、エンジニア向けにPythonを使った簡単な実装例を提供します。テキスト生成や会話ボットの構築、デプロイ方法についても解説。
2024-09-24
4.4 LLMによるコード生成 | 生産性を高める自動コード生成とその応用
LLM(大規模言語モデル)を活用したコード生成の仕組みをエンジニア向けに解説。テンプレートコードや関数の自動生成、テストコードの生成など、開発現場での応用例とともに、GitHub Copilotなどの事例を紹介。
2024-09-19
2.3 BERT, GPT, T5などの代表的なLLMモデルの解説 | 自然言語処理タスクへの応用
BERT、GPT、T5などの代表的なLLMモデルをエンジニア向けに解説。それぞれのモデルが持つ特徴と強み、適用されるNLPタスクについて詳しく説明します。プロジェクトに最適なモデルを選ぶためのガイド。
2024-09-10
1.3 LLMと機械学習の違い | トランスフォーマー、トランスファーラーニング、汎用性の比較
LLM(大規模言語モデル)と従来の機械学習(ML)モデルの違いを解説。トランスフォーマーアーキテクチャの利点、汎用性、データスケーラビリティ、トランスファーラーニングの活用をエンジニア向けに詳しく説明。
2024-09-05
LLM入門: しくみから学ぶ 生成AIの基礎
自然言語処理で注目される大規模言語モデル(LLM)の仕組みやトレーニング方法、応用例をエンジニア向けに分かりやすく解説。GPTやBERTなどの最新モデルの解説も含む、実際にLLMを活用するための実践的なガイド。
2024-09-01