LLM入門


合計 64 件の記事があります。 現在 2 ページ中の 1 ページ目です。

LLM Memory APIとMCPの違いとは?|MCP入門 7.2|ユーザー記憶と文脈設計を統合する方法

ユーザー情報や履歴を保存するMemory APIと、構造的な文脈設計を担うMCPは、目的も実装も異なります。本記事では両者の違いと補完関係、そして信頼性の高いプロンプト設計に向けた統合戦略を具体的に解説します。
2025-04-03

ストラクチャード・コンテキスト vs ナチュラル・プロンプティングとは?|MCP入門 6.3|構造化と柔軟性を両立するプロンプト設計

生成AIに文脈を渡すには、JSON形式の構造化データか自然言語プロンプトか、どちらが適切か。本記事では、MCP設計において“ストラクチャード・コンテキスト”と“ナチュラル・プロンプティング”の違いと併用戦略を詳しく解説します。
2025-03-30

外部ツールとのプロトコル統合とは?|MCP入門 4.4|カレンダー・チャット・CRMをAIと連携する設計法

SlackやGoogle Calendar、Salesforceなどの外部ツールと生成AIを連携し、チャットから予定作成や顧客データ操作を行う方法を解説。MCPを活用し、文脈の更新・アクション提案・認証設計まで詳しく紹介します。
2025-03-21

RAGとの統合設計とは?|MCP入門 4.1|生成AIの文脈構築を強化する検索補助付き設計

RAG(検索補助付き生成)は、生成AIに最新情報や社内知識を与える鍵です。本章では、MCPとの接続方法、FAQ注入、要約統合、テンプレートとの連携など、RAGとコンテキスト設計を統合する具体的手法を紹介します。
2025-03-18

コンテキストマネジメントとは?|MCP入門 3.2|履歴と外部情報を活かす生成AI設計

生成AIの出力品質は、どんな文脈や履歴情報を参照しているかで決まります。本章では、チャット履歴要約・外部ベクター検索・ユーザープロファイル統合といったMCP設計の基礎を丁寧に解説します。
2025-03-14

システムインストラクションの設計パターンとは?|MCP入門 3.1|生成AIの人格と振る舞いの設計

生成AIの出力に一貫性と目的を持たせるには、システムインストラクションの設計が重要です。MCPにおける役割、トーン、ルール、タスク駆動型など、代表的な設計パターンをわかりやすく解説します。
2025-03-13

OpenAI Function CallingとMCPの関係とは?|MCP入門 2.4|生成AIの構造化出力と実装設計

OpenAIのFunction Callingは、生成AIが構造化された出力を返す仕組みです。MCP(Model Context Protocol)の文脈・状態設計と深く関係し、再現性や拡張性の高いAI実装を支えます。本節ではその原理と設計のポイントを丁寧に解説します。
2025-03-11

コンテキストウィンドウとは?生成AIにおける文脈の限界とMCP設計|MCP入門 1.3

生成AIが扱える“文脈”には上限があります。それがコンテキストウィンドウです。トークン数の制限とは何か、なぜ応答が急に崩れるのか、MCP(Model Context Protocol)における設計の工夫まで、丁寧に解説します。
2025-03-05

7.3 マルチモーダルモデルとLLMの統合 | テキスト、画像、音声、映像の融合技術

マルチモーダルモデルとLLMの統合により、テキスト、画像、音声、映像を同時に処理することで、より深い理解と高精度な応答が可能になります。具体的な技術と応用例を紹介します。
2024-11-26

7.2 LLMの省リソーストレーニング技術 | 蒸留、量子化、スパース化、分散トレーニング

LLMのトレーニングにおける省リソース技術を解説。モデル蒸留、量子化、スパース化、分散トレーニングの手法でコストを削減しながら性能を維持する方法を紹介します。
2024-11-25

6.2 LLMモデルのバージョニングとモニタリング | MLflowとPrometheusを活用

LLMモデルの管理を効率化するためのバージョニングとモニタリング手法を解説。MLflowでモデルをバージョン管理し、PrometheusとGrafanaでリアルタイムにパフォーマンスを監視します。
2024-11-22

4.0 LLMのモデル圧縮と推論速度の最適化|効率的なパフォーマンス改善

LLMのモデル圧縮技術と推論速度の最適化手法を解説。量子化、知識蒸留、ONNXを使用したPython実装例で効率的なLLMのデプロイをサポート。
2024-11-12

3.2 LLMのデータクレンジング自動化|Pythonでの効率的なノイズ除去と前処理

LLMのトレーニングにおけるデータクレンジングの重要性とその自動化手法を解説。Pythonコード例で、HTMLタグの除去、ストップワードの削除、正規化などの基本的なクレンジングプロセスを紹介します。
2024-11-11

3.3 LLMのデータロードと前処理パイプライン構築|効率的なデータ処理の自動化

LLMトレーニングに必要なデータロードと前処理パイプラインの構築方法を解説。Pythonコード例を使用し、Pandas、Dask、Scikit-learnでの効率的なデータ処理を紹介します。
2024-11-11

3.1 LLMのサブワードトークナイザーの使用方法|BERTやGPT-2でのトークン化の解説

サブワードトークナイザーを使用したLLMのトークン化方法を解説。Hugging FaceのBERTやGPT-2トークナイザーを使用し、Pythonコード例で具体的な実装方法を紹介します。
2024-11-10

3.0 LLMのトークン化とデータ前処理の自動化|効率的なデータクレンジングと前処理パイプライン

LLMのトレーニングに必要なトークン化とデータ前処理の自動化について解説。Pythonコード例とHugging Faceライブラリを使用し、データクレンジングと効率的な前処理パイプラインの構築方法を紹介します。
2024-11-09

2.3 LLMのトレーニング実行とモデル評価|Pythonによるトレーニングと評価手法

LLMのトレーニングと評価の手順をPythonコード例と共に紹介。Hugging Face Transformersを使用したBERTモデルのトレーニング、評価指標の解説、モデルの保存方法を説明します。
2024-11-08

2.2 LLMのトレーニングデータ準備と前処理|Pythonでのデータクレンジングとトークナイゼーション

LLMのファインチューニングに必要なデータ準備と前処理を解説。Pythonを使用したデータクレンジング、トークナイゼーション、データセット整理の方法を紹介します。
2024-11-07

2.1 Hugging Face Transformersを使ったモデルのファインチューニング|BERTのPython実装例

Hugging FaceのTransformersライブラリを使って、BERTモデルのファインチューニングを行う方法を解説します。Pythonコード例と共に、データ前処理やトレーニング設定のポイントも紹介。
2024-11-06

2.0 LLMモデルのファインチューニング|Hugging Faceを使った効率的な微調整手法

Hugging FaceのTransformersライブラリを使用して、LLMのファインチューニングを行う方法を解説。トレーニングデータの準備から評価までの具体的な手順を紹介。
2024-11-05

1.3 LLM推論APIにおけるキャッシュ戦略|高速化と負荷軽減のためのベストプラクティス

LLM推論APIのパフォーマンスを向上させるキャッシュ戦略について解説。Redisを使った具体的な実装例やキャッシュ最適化のベストプラクティスを紹介します。
2024-11-04

LLM入門:Pythonを用いたLLMアプリケーション構築ガイド | API設計、微調整、デプロイ

Pythonエンジニア向けに、LLM(大規模言語モデル)を活用したアプリケーションの構築方法を徹底解説。FlaskやFastAPIを使ったAPI設計、モデルの微調整(ファインチューニング)、データ前処理の自動化、推論速度の最適化、Docker/Kubernetesを使ったデプロイまで、実践的な内容をカバーします。
2024-11-01

9.2 LLMの実装に向けたリソースと学習の提案 - 効果的なツールとコースの活用

LLM(大規模言語モデル)の実装に必要なリソースや学習方法を紹介します。オープンソースフレームワーク、クラウドプラットフォーム、データセット、オンラインコースなど、実践的なアプローチに必要なリソースを提供します。
2024-10-27

9.1 LLMを理解するための次のステップ - 実践的な学習方法とプロジェクト参加のすすめ

LLM(大規模言語モデル)の基礎を学んだエンジニアが、さらなる学びを進めるための次のステップを紹介します。研究論文の精読、実践的プロジェクトの参加、モデルのカスタマイズや最適化手法について詳しく解説します。
2024-10-26

9.0 LLMとエンジニアが向き合うべきポイント - モデル最適化、バイアス対応、倫理的責任

LLM(大規模言語モデル)を扱うエンジニアが向き合うべき重要なポイントを解説します。モデルの最適化やバイアス軽減、データプライバシーの保護、倫理的責任など、LLM開発における重要な側面について考察します。
2024-10-25

8.2 LLMにおけるバイアスと倫理的課題 - 公平で信頼性の高いAIの実現に向けた取り組み

LLM(大規模言語モデル)が抱えるバイアスと倫理的課題について解説し、データバイアス軽減の技術や説明可能なAI(XAI)の役割を紹介します。より公平で信頼性の高いAIシステムを構築するための今後の展望も説明します。
2024-10-24

8.1 モデルサイズと計算コスト - LLMの効率的な運用とコスト削減の技術

LLM(大規模言語モデル)のモデルサイズと計算コストに関する課題を解説し、量子化やプルーニングなどのモデル圧縮技術や、分散学習を通じたトレーニングコスト削減の方法を紹介します。
2024-10-23

7.1 テキスト生成と自動要約 - LLMによる効率的なコンテンツ生成と要約技術

LLM(大規模言語モデル)を用いたテキスト生成と自動要約技術の仕組みを解説します。ニュース記事の自動生成、報告書の要約、チャットボット応答などの具体的な応用事例も紹介しています。
2024-10-20

7.0 LLMの具体的な応用例 - 自然言語生成、機械翻訳、医療、法律、教育分野の利用事例

LLM(大規模言語モデル)は、自然言語生成、機械翻訳、医療、法律、教育など、様々な分野で幅広く応用されています。具体的な応用事例を通じて、LLMの現実世界での活用方法を紹介します。
2024-10-19

6.2 ミニバッチ学習と計算効率 - 大規模データセットの効率的なトレーニング手法

ミニバッチ学習は、大規模データセットを効率的にトレーニングするための手法です。計算効率の向上、学習率の調整、バッチサイズの最適化など、効率的なモデル構築を支える技術について解説します。
2024-10-18

6.1 データセットの前処理 - トレーニングデータのクリーニングと最適化方法

LLM(大規模言語モデル)のトレーニングに使用されるデータセットの前処理手法を解説します。データのクリーニング、トークン化、バイアス軽減、サンプリングなど、効果的な学習のためのプロセスを紹介します。
2024-10-17

6.0 大規模データセットとLLMトレーニングの実際 - データ収集、前処理、トレーニング方法

LLM(大規模言語モデル)のトレーニングには、膨大なデータセットと計算リソースが必要です。データ収集から前処理、トレーニング手法、評価方法までを詳しく解説します。
2024-10-16

5.0 勾配降下法とモデル最適化 - LLMのトレーニング手法解説

勾配降下法は、LLM(大規模言語モデル)のトレーニングにおける重要な最適化手法です。クロスエントロピー損失やミニバッチ勾配降下法、勾配クリッピングを使ってモデルの精度を向上させる仕組みを解説します。
2024-10-13

4.1 セルフアテンションメカニズム - トランスフォーマーモデルの数理的基盤

トランスフォーマーモデルのセルフアテンションメカニズムについて詳しく解説します。クエリ、キー、バリューを用いた行列演算による単語間の関連度計算と、ソフトマックス関数を使った正規化を説明します。
2024-10-11

4.0 トランスフォーマーの数理 - セルフアテンションとマルチヘッドアテンションの仕組み

トランスフォーマーモデルにおける数理的な仕組みを解説します。セルフアテンションメカニズムの行列演算や、マルチヘッドアテンションによる文脈理解の向上について詳しく説明します。
2024-10-11

3.1 確率論と統計 - LLMにおける言語生成と予測の基礎

確率論と統計は、LLMの言語生成や次の単語の予測において重要な役割を果たします。n-gramモデル、マルコフ連鎖、最大尤度推定(MLE)など、LLMの予測精度を向上させる数理的手法について解説します。
2024-10-09

3.0 LLMの数理モデル - 確率論と線形代数の基礎解説

LLMの動作に深く関わる数理モデルについて解説します。確率論や統計がどのように言語生成に使われ、線形代数が単語埋め込みやベクトル空間での計算にどのように貢献しているのかを詳しく説明します。
2024-10-08

2.1 自然言語処理(NLP)の概要と数学的手法 - 確率論と線形代数を用いたアプローチ

自然言語処理(NLP)の基本概念と、その数学的手法を解説します。確率論、統計、線形代数を利用したアプローチを通じて、NLPがどのようにテキストを理解・生成し、LLMに応用されているのかを紹介します。
2024-10-06

2.0 LLMの基礎概念 - 自然言語処理とトランスフォーマーモデルの解説

本記事では、LLMの基礎概念として、自然言語処理(NLP)の概要とトランスフォーマーモデルの仕組みについて詳しく説明します。LLMがどのようにして膨大なデータを処理し、高精度な結果を出すのかを理解します。
2024-10-06

7.5 LLMの法的規制とガバナンス:プライバシー保護と倫理対応の重要性

大規模言語モデル(LLM)の法的規制とガバナンスについて解説。プライバシー保護やデータ規制、ガバナンス体制の構築、各国の法的動向に対応したLLM運用のポイントを紹介します。
2024-10-02

7.4 LLMにおけるデータ倫理とバイアス問題 | 公平性を高めるための対策

LLM(大規模言語モデル)のデータ倫理とバイアスの問題について解説。バイアスの発生要因とその影響、バイアス軽減のための対策、法的・社会的な影響についてエンジニア向けに詳述します。
2024-10-01

LLM入門 - 数学で理解する大規模言語モデルの仕組み

大規模言語モデル(LLM)の基礎から応用までを初心者向けにわかりやすく解説。LLMの仕組み、トレーニング、活用方法を体系的に学べる入門ガイド。
2024-10-01

7.3 LLMとマルチモーダルモデルの統合 | 画像、音声、映像との連携による未来のAI

LLM(大規模言語モデル)とマルチモーダルモデルの統合について解説。テキスト以外のデータ(画像、音声、映像など)との連携により、AIシステムの認識能力が飛躍的に向上する具体的な応用例や技術的課題、未来の展望を紹介。
2024-09-30

7.2 省リソースでのLLMトレーニング | モデル蒸留、量子化、分散トレーニングの手法

LLM(大規模言語モデル)を省リソースでトレーニングするための技術を解説。モデル蒸留、量子化、分散トレーニング、データ効率の改善など、エンジニア向けにリソース削減のための手法を紹介します。
2024-09-29

7.1 LLMの大規模モデル進化 | モデルサイズの拡大とその課題、技術的アプローチ

LLM(大規模言語モデル)の進化について解説。モデルサイズの急速な拡大とそれに伴う課題、そして効率的なトレーニング手法や量子化技術など、技術的なアプローチを紹介します。
2024-09-28

7.0 LLMの未来の展望と課題 | モデル進化、省リソース、マルチモーダル統合

LLM(大規模言語モデル)の未来の発展と課題をエンジニア向けに解説。モデルの拡大、省リソーストレーニング、マルチモーダルモデルとの統合、データ倫理、法的規制など、技術的・倫理的な課題を詳述します。
2024-09-27

6.2 Pythonを使ったLLM実装例 | Hugging Face, OpenAI, Google Cloud, Azureを活用したテキスト生成

Pythonを使ってLLM(大規模言語モデル)を簡単に実装する方法をエンジニア向けに解説。Hugging Face、OpenAI、Google Cloud、Azureを使用したテキスト生成や感情分析の実装例を紹介します。
2024-09-26

6.1 LLMを試すためのオープンソースツールとAPIの紹介 | Hugging Face, OpenAI, Google Cloud, Azure

LLM(大規模言語モデル)を試すための主要なオープンソースツールやAPIをエンジニア向けに解説。Hugging Face、OpenAI、Google Cloud AI、Microsoft Azure Cognitive Servicesの特徴と使用方法を紹介し、簡単な実装例も提供。
2024-09-25

6.0 実際にLLMを試してみる | オープンソースツールと簡単な実装例

LLM(大規模言語モデル)を実際に試すためのオープンソースツールやAPIを紹介し、エンジニア向けにPythonを使った簡単な実装例を提供します。テキスト生成や会話ボットの構築、デプロイ方法についても解説。
2024-09-24

5.3 LLMのリアルタイム使用における課題 | レイテンシとスケーラビリティの対策

LLM(大規模言語モデル)をリアルタイムで使用する際の課題と対策をエンジニア向けに解説。レイテンシの低減やスケーラビリティの確保、モデル最適化の手法について詳述します。
2024-09-23

チーム

任 弘毅

株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。

下田 昌平

開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。