LLM入門
合計 16 件の記事があります。
現在 1 ページ中の 1 ページ目です。

ドキュメントベース質問応答(RAG)でのContext設計とは?|MCP入門 5.3|情報の構造化で精度と説明力を高める方法
RAG(検索補助生成)で生成AIが正確に応答するためには、検索結果をどのように文脈化するかが鍵です。MCP設計により、取得情報のスロット化・優先度付け・役割づけを行い、安定した回答と説明責任のある出力を実現する方法を解説します。
2025-03-25

タスク分離とセッション切り替えとは?|MCP入門 5.2|AI応答の誤りを防ぐ文脈設計
1人のユーザーが複数の目的でAIと対話する時、文脈の混在は誤応答や情報漏洩の原因になります。MCPによるセッションIDやタスクタグの活用により、タスク単位の文脈を安全かつ自然に切り替える方法を詳しく解説します。
2025-03-24

MCPによる状態制御と再現性の向上とは?|MCP入門 2.3|生成AIの安定設計の鍵
生成AIをプロダクトとして安定運用するには、出力の一貫性と再現性が不可欠です。MCP(Model Context Protocol)は文脈と状態を構造化し、モデルの振る舞いを制御・再現可能にします。設計原則から具体例まで詳しく解説。
2025-03-10

コンテキストウィンドウとは?生成AIにおける文脈の限界とMCP設計|MCP入門 1.3
生成AIが扱える“文脈”には上限があります。それがコンテキストウィンドウです。トークン数の制限とは何か、なぜ応答が急に崩れるのか、MCP(Model Context Protocol)における設計の工夫まで、丁寧に解説します。
2025-03-05

6.3 LLMのCI/CDパイプライン構築 | GitHub ActionsとJenkinsの活用
LLMアプリケーションの継続的インテグレーションと継続的デリバリーを実現するためのGitHub ActionsとJenkinsの設定方法を解説。自動化されたテストとデプロイにより、リリース速度と品質を向上します。
2024-11-23

6.2 LLMモデルのバージョニングとモニタリング | MLflowとPrometheusを活用
LLMモデルの管理を効率化するためのバージョニングとモニタリング手法を解説。MLflowでモデルをバージョン管理し、PrometheusとGrafanaでリアルタイムにパフォーマンスを監視します。
2024-11-22

4.1 LLMのモデル圧縮技術|効率的な量子化と知識蒸留
LLMのモデル圧縮技術を解説。量子化、知識蒸留、プルーニングの実装例を紹介し、推論速度とリソース効率を向上させる方法を学びます。
2024-11-13

8.2 LLMにおけるバイアスと倫理的課題 - 公平で信頼性の高いAIの実現に向けた取り組み
LLM(大規模言語モデル)が抱えるバイアスと倫理的課題について解説し、データバイアス軽減の技術や説明可能なAI(XAI)の役割を紹介します。より公平で信頼性の高いAIシステムを構築するための今後の展望も説明します。
2024-10-24

8.1 モデルサイズと計算コスト - LLMの効率的な運用とコスト削減の技術
LLM(大規模言語モデル)のモデルサイズと計算コストに関する課題を解説し、量子化やプルーニングなどのモデル圧縮技術や、分散学習を通じたトレーニングコスト削減の方法を紹介します。
2024-10-23

5.2 勾配降下法とバックプロパゲーション - LLMのトレーニング手法の解説
勾配降下法とバックプロパゲーションは、LLM(大規模言語モデル)のトレーニングにおける重要な手法です。損失関数の勾配を効率的に計算し、モデルのパラメータを最適化するプロセスを詳しく解説します。
2024-10-15

5.1 損失関数の重要性 - LLMにおけるモデル最適化のカギ
損失関数は、モデルの最適化において重要な役割を果たし、LLMの精度向上に寄与します。クロスエントロピー損失関数や過学習、学習不足の検出に役立つ損失関数の仕組みを解説します。
2024-10-14

5.0 勾配降下法とモデル最適化 - LLMのトレーニング手法解説
勾配降下法は、LLM(大規模言語モデル)のトレーニングにおける重要な最適化手法です。クロスエントロピー損失やミニバッチ勾配降下法、勾配クリッピングを使ってモデルの精度を向上させる仕組みを解説します。
2024-10-13

4.0 トランスフォーマーの数理 - セルフアテンションとマルチヘッドアテンションの仕組み
トランスフォーマーモデルにおける数理的な仕組みを解説します。セルフアテンションメカニズムの行列演算や、マルチヘッドアテンションによる文脈理解の向上について詳しく説明します。
2024-10-11

2.2 トランスフォーマーモデルの仕組み - セルフアテンションと並列処理の解説
トランスフォーマーモデルの基本構造とセルフアテンションメカニズムについて、数学的アプローチで解説します。行列演算を用いた単語間の重要度計算や、並列処理の強み、勾配降下法による学習についても詳述します。
2024-10-07

LLM入門 - 数学で理解する大規模言語モデルの仕組み
大規模言語モデル(LLM)の基礎から応用までを初心者向けにわかりやすく解説。LLMの仕組み、トレーニング、活用方法を体系的に学べる入門ガイド。
2024-10-01

3.2 LLMのトレーニングステップ | フォワードプロパゲーションとバックプロパゲーションの解説
LLM(大規模言語モデル)のトレーニングプロセスをエンジニア向けに解説。初期化からフォワードプロパゲーション、ロス計算、バックプロパゲーションまで、トレーニングの主要なステップと学習率やハイパーパラメータ調整の重要性について説明します。
2024-09-13
タグ
検索履歴
エンジニア向け 295
マルコフ連鎖 271
大規模言語モデル 270
自動要約 268
データ前処理 264
NLP トランスフォーマー 263
言語モデル 255
教育AI 253
パーソナライズドコンテンツ 249
トークン化 247
注意メカニズム 246
数学的アプローチ 243
生成型要約 243
セルフアテンション 242
ミニバッチ学習 240
線形代数 238
ロス計算 237
トレーニング 236
GPT-2 テキスト生成 235
LLM 要約 233
クロスエントロピー損失 233
LLM テキスト生成 232
自動翻訳 231
LLM リアルタイム処理 228
バイアス 問題 228
ニュース記事生成 226
自然言語処理 翻訳 226
GPT テキスト生成 223
コード生成 222
GPT ファインチューニング 221
チーム

任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。

下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。