LLM入門
合計 76 件の記事があります。
現在 2 ページ中の 1 ページ目です。

人格・役割・意図の設計とは?|MCP入門 7.4|AIの“存在”をプロトコルで定義する方法
AIが人格を持ち、役割を柔軟に切り替え、意図を理解して発話する時代が始まろうとしています。本記事では、MCPによってこうした構成要素をどのように設計・再現し、対話的存在としてのAIを実現できるのかを解説します。
2025-04-05

W3CのAI Context仕様とは?|MCP入門 7.3|文脈の国際標準化とMCPの役割
AIの意思決定や会話文脈を明示的に設計するため、W3CではAI Context仕様の標準化が進んでいます。本記事ではその動向と、MCPとの親和性や将来のマッピング可能性について詳しく解説します。
2025-04-04

OpenAI GPT、Claude、Geminiの文脈処理とは?|MCP入門 7.1|各社LLMの設計思想とMCPの位置づけ
各社LLMは文脈や状態の扱い方に独自のアプローチを持っています。本記事ではOpenAI GPTのSystem MessageとMemory API、Claudeの自己内省型設計、Geminiのマルチモーダル連携を比較し、MCPが果たす中立的な役割を明らかにします。
2025-04-02

MCPの未来と標準化への道とは?|MCP入門 7.0|AI文脈設計の次なるステージとグローバル接続性
Model Context Protocol(MCP)はAIの文脈理解と再現性を支える設計思想です。最終章では、各社LLMとの親和性、Memory API連携、W3C標準化、人格と役割の制御まで、MCPの未来像を展望します。
2025-04-01

ストラクチャード・コンテキスト vs ナチュラル・プロンプティングとは?|MCP入門 6.3|構造化と柔軟性を両立するプロンプト設計
生成AIに文脈を渡すには、JSON形式の構造化データか自然言語プロンプトか、どちらが適切か。本記事では、MCP設計において“ストラクチャード・コンテキスト”と“ナチュラル・プロンプティング”の違いと併用戦略を詳しく解説します。
2025-03-30

“明示的な制約”と“暗黙の指示”の違いとは?|MCP入門 6.1|AIが期待に応えるためのプロンプト設計術
生成AIは指示されたことだけでなく、空気や文脈を読むことも求められます。本記事では、プロンプトにおける“明示的な制約”と“暗黙の指示”の違いを解説し、MCP設計を通じて誤解を防ぎ、意図通りの応答を得るための設計手法を紹介します。
2025-03-28

モデルの“意図解釈”と状態伝達とは?|MCP入門 6.0|プロンプトに込められた意図を理解するLLM設計
LLMが正しく応答するためには、文脈だけでなく“何を求められているか”という意図を読み取る力が不可欠です。本章では、明示的な制約・システムメッセージ・構造化文脈などを通じて、モデルがどのように内部状態を形成するかを解説します。
2025-03-27

ツール活用 / マルチエージェントシステムでのMCP適用例とは?|MCP入門 5.4|複数エージェントとツールを統合する文脈設計
ツール活用やマルチエージェント設計では、AIが状態や目的を共有しながら協調する必要があります。MCPを活用することで、共通の文脈管理・状態同期・出力整理を実現し、複雑な連携を安定運用できる方法を解説します。
2025-03-26

タスク分離とセッション切り替えとは?|MCP入門 5.2|AI応答の誤りを防ぐ文脈設計
1人のユーザーが複数の目的でAIと対話する時、文脈の混在は誤応答や情報漏洩の原因になります。MCPによるセッションIDやタスクタグの活用により、タスク単位の文脈を安全かつ自然に切り替える方法を詳しく解説します。
2025-03-24

外部ツールとのプロトコル統合とは?|MCP入門 4.4|カレンダー・チャット・CRMをAIと連携する設計法
SlackやGoogle Calendar、Salesforceなどの外部ツールと生成AIを連携し、チャットから予定作成や顧客データ操作を行う方法を解説。MCPを活用し、文脈の更新・アクション提案・認証設計まで詳しく紹介します。
2025-03-21

マルチセッションとユーザー管理とは?|MCP入門 4.3|生成AIで複数会話と文脈を自在に制御する方法
一人のユーザーが複数の会話・プロジェクト・目的を同時に扱う時代において、セッション分離と状態復元は不可欠です。本章では、MCPを活用したマルチセッション設計、履歴管理、テンプレート切替、セキュリティまでを詳しく解説します。
2025-03-20

RAGとの統合設計とは?|MCP入門 4.1|生成AIの文脈構築を強化する検索補助付き設計
RAG(検索補助付き生成)は、生成AIに最新情報や社内知識を与える鍵です。本章では、MCPとの接続方法、FAQ注入、要約統合、テンプレートとの連携など、RAGとコンテキスト設計を統合する具体的手法を紹介します。
2025-03-18

OpenAI Function CallingとMCPの関係とは?|MCP入門 2.4|生成AIの構造化出力と実装設計
OpenAIのFunction Callingは、生成AIが構造化された出力を返す仕組みです。MCP(Model Context Protocol)の文脈・状態設計と深く関係し、再現性や拡張性の高いAI実装を支えます。本節ではその原理と設計のポイントを丁寧に解説します。
2025-03-11

MCPによる状態制御と再現性の向上とは?|MCP入門 2.3|生成AIの安定設計の鍵
生成AIをプロダクトとして安定運用するには、出力の一貫性と再現性が不可欠です。MCP(Model Context Protocol)は文脈と状態を構造化し、モデルの振る舞いを制御・再現可能にします。設計原則から具体例まで詳しく解説。
2025-03-10

MCPとは?生成AIの文脈と状態を設計する仕組み|MCP入門 2.1
MCP(Model Context Protocol)は、生成AIが一貫した出力を生むための文脈と状態を設計・再現するためのプロトコルです。本節ではMCPの定義、プロンプトとの違い、設計思想としての役割を丁寧に解説します。
2025-03-08

モデルにとっての記憶とは何か?|MCP入門 1.4|生成AIと文脈再現の技術
生成AIは本当に記憶しているのか?実は、AIの“記憶”は文脈の再構築にすぎません。エフェメラルメモリ・永続メモリ・役割設計など、MCP(Model Context Protocol)での記憶制御の仕組みをわかりやすく解説します。
2025-03-06

モデルはなぜ文脈を必要とするのか?|MCP入門 1.1|生成AIとコンテキスト理解
ChatGPTをはじめとする生成AIは、入力だけでなく“文脈”によって出力を変えています。なぜ文脈が必要なのか、モデルはどう背景を読み取るのか。MCP設計の基礎となる文脈理解について、具体例を交えて丁寧に解説します。
2025-03-03

モデルコンテキストの基礎|MCP入門 第1章|生成AIが文脈を理解する仕組み
生成AIやChatGPTの出力がなぜ“賢く”見えるのか?その鍵は文脈にあります。MCP(Model Context Protocol)の理解に必要な、AIと文脈の関係、プロンプトとの違い、コンテキストウィンドウの制約などをわかりやすく解説します。
2025-03-02

7.3 マルチモーダルモデルとLLMの統合 | テキスト、画像、音声、映像の融合技術
マルチモーダルモデルとLLMの統合により、テキスト、画像、音声、映像を同時に処理することで、より深い理解と高精度な応答が可能になります。具体的な技術と応用例を紹介します。
2024-11-26

7.2 LLMの省リソーストレーニング技術 | 蒸留、量子化、スパース化、分散トレーニング
LLMのトレーニングにおける省リソース技術を解説。モデル蒸留、量子化、スパース化、分散トレーニングの手法でコストを削減しながら性能を維持する方法を紹介します。
2024-11-25

7.1 LLMの大規模モデル進化 | 性能向上と技術的課題
LLMの大規模モデル化による性能向上と、計算リソースやトレーニングコストの課題を解説。エンジニアが対応すべき技術と今後の展望を紹介します。
2024-11-25

6.2 LLMモデルのバージョニングとモニタリング | MLflowとPrometheusを活用
LLMモデルの管理を効率化するためのバージョニングとモニタリング手法を解説。MLflowでモデルをバージョン管理し、PrometheusとGrafanaでリアルタイムにパフォーマンスを監視します。
2024-11-22

5.2 コンテキストを保持したマルチターン会話の実装|LLM活用ガイド
LLMを用いたコンテキストを保持したマルチターン会話の実装方法を紹介。FlaskとRedisを使用したスケーラブルなチャットボットの設計とPythonのサンプルコードを掲載。
2024-11-18

5.1 LLMを活用したチャットボットの基本アーキテクチャ|Python実装ガイド
LLMを活用したチャットボットの基本アーキテクチャとPythonによる簡単なAPI実装例を紹介。FlaskやFastAPIを使用したスケーラブルな設計方法を解説。
2024-11-17

4.3 LLMのモデル圧縮技術|知識蒸留、量子化、プルーニングの解説
知識蒸留、量子化、プルーニングなどのモデル圧縮技術を使い、LLMの計算コストと推論速度を改善する方法を解説します。Pythonの実装例も紹介。
2024-11-15

4.2 LLMの推論速度を最適化する方法|バッチ推論と半精度推論の活用
LLMの推論速度を改善するための技術を解説。バッチ推論、ONNX Runtime、半精度推論(FP16)など、効率的な推論手法とその実装例を紹介します。
2024-11-14

4.1 LLMのモデル圧縮技術|効率的な量子化と知識蒸留
LLMのモデル圧縮技術を解説。量子化、知識蒸留、プルーニングの実装例を紹介し、推論速度とリソース効率を向上させる方法を学びます。
2024-11-13

4.0 LLMのモデル圧縮と推論速度の最適化|効率的なパフォーマンス改善
LLMのモデル圧縮技術と推論速度の最適化手法を解説。量子化、知識蒸留、ONNXを使用したPython実装例で効率的なLLMのデプロイをサポート。
2024-11-12

3.3 LLMのデータロードと前処理パイプライン構築|効率的なデータ処理の自動化
LLMトレーニングに必要なデータロードと前処理パイプラインの構築方法を解説。Pythonコード例を使用し、Pandas、Dask、Scikit-learnでの効率的なデータ処理を紹介します。
2024-11-11

3.0 LLMのトークン化とデータ前処理の自動化|効率的なデータクレンジングと前処理パイプライン
LLMのトレーニングに必要なトークン化とデータ前処理の自動化について解説。Pythonコード例とHugging Faceライブラリを使用し、データクレンジングと効率的な前処理パイプラインの構築方法を紹介します。
2024-11-09

2.2 LLMのトレーニングデータ準備と前処理|Pythonでのデータクレンジングとトークナイゼーション
LLMのファインチューニングに必要なデータ準備と前処理を解説。Pythonを使用したデータクレンジング、トークナイゼーション、データセット整理の方法を紹介します。
2024-11-07

1.3 LLM推論APIにおけるキャッシュ戦略|高速化と負荷軽減のためのベストプラクティス
LLM推論APIのパフォーマンスを向上させるキャッシュ戦略について解説。Redisを使った具体的な実装例やキャッシュ最適化のベストプラクティスを紹介します。
2024-11-04

1.2 LLM推論APIのスケーリング|水平スケーリング、ロードバランシング、キャッシュ戦略の実装
LLM推論APIのパフォーマンス向上方法を紹介します。水平スケーリング、ロードバランシング、Redisキャッシュ戦略を使用した効率的なAPI設計の実装例を解説。
2024-11-04

9.0 LLMとエンジニアが向き合うべきポイント - モデル最適化、バイアス対応、倫理的責任
LLM(大規模言語モデル)を扱うエンジニアが向き合うべき重要なポイントを解説します。モデルの最適化やバイアス軽減、データプライバシーの保護、倫理的責任など、LLM開発における重要な側面について考察します。
2024-10-25

8.2 LLMにおけるバイアスと倫理的課題 - 公平で信頼性の高いAIの実現に向けた取り組み
LLM(大規模言語モデル)が抱えるバイアスと倫理的課題について解説し、データバイアス軽減の技術や説明可能なAI(XAI)の役割を紹介します。より公平で信頼性の高いAIシステムを構築するための今後の展望も説明します。
2024-10-24

8.1 モデルサイズと計算コスト - LLMの効率的な運用とコスト削減の技術
LLM(大規模言語モデル)のモデルサイズと計算コストに関する課題を解説し、量子化やプルーニングなどのモデル圧縮技術や、分散学習を通じたトレーニングコスト削減の方法を紹介します。
2024-10-23

7.2 質問応答システムと機械翻訳 - LLMによる自然言語処理の応用技術
LLM(大規模言語モデル)を活用した質問応答システムと機械翻訳の技術について詳しく解説します。カスタマーサポートの自動化、国際ビジネス、観光業界などでの具体的な応用例を紹介します。
2024-10-21

7.1 テキスト生成と自動要約 - LLMによる効率的なコンテンツ生成と要約技術
LLM(大規模言語モデル)を用いたテキスト生成と自動要約技術の仕組みを解説します。ニュース記事の自動生成、報告書の要約、チャットボット応答などの具体的な応用事例も紹介しています。
2024-10-20

7.0 LLMの具体的な応用例 - 自然言語生成、機械翻訳、医療、法律、教育分野の利用事例
LLM(大規模言語モデル)は、自然言語生成、機械翻訳、医療、法律、教育など、様々な分野で幅広く応用されています。具体的な応用事例を通じて、LLMの現実世界での活用方法を紹介します。
2024-10-19

6.2 ミニバッチ学習と計算効率 - 大規模データセットの効率的なトレーニング手法
ミニバッチ学習は、大規模データセットを効率的にトレーニングするための手法です。計算効率の向上、学習率の調整、バッチサイズの最適化など、効率的なモデル構築を支える技術について解説します。
2024-10-18

6.1 データセットの前処理 - トレーニングデータのクリーニングと最適化方法
LLM(大規模言語モデル)のトレーニングに使用されるデータセットの前処理手法を解説します。データのクリーニング、トークン化、バイアス軽減、サンプリングなど、効果的な学習のためのプロセスを紹介します。
2024-10-17

6.0 大規模データセットとLLMトレーニングの実際 - データ収集、前処理、トレーニング方法
LLM(大規模言語モデル)のトレーニングには、膨大なデータセットと計算リソースが必要です。データ収集から前処理、トレーニング手法、評価方法までを詳しく解説します。
2024-10-16

5.1 損失関数の重要性 - LLMにおけるモデル最適化のカギ
損失関数は、モデルの最適化において重要な役割を果たし、LLMの精度向上に寄与します。クロスエントロピー損失関数や過学習、学習不足の検出に役立つ損失関数の仕組みを解説します。
2024-10-14

5.0 勾配降下法とモデル最適化 - LLMのトレーニング手法解説
勾配降下法は、LLM(大規模言語モデル)のトレーニングにおける重要な最適化手法です。クロスエントロピー損失やミニバッチ勾配降下法、勾配クリッピングを使ってモデルの精度を向上させる仕組みを解説します。
2024-10-13

4.2 マルチヘッドアテンションの数理 - トランスフォーマーモデルにおける文脈理解の強化
トランスフォーマーモデルのマルチヘッドアテンションについて詳しく解説します。各ヘッドが異なる視点から文中の単語間の関連性を捉える仕組みと、その数理的な背景について説明します。
2024-10-12

4.1 セルフアテンションメカニズム - トランスフォーマーモデルの数理的基盤
トランスフォーマーモデルのセルフアテンションメカニズムについて詳しく解説します。クエリ、キー、バリューを用いた行列演算による単語間の関連度計算と、ソフトマックス関数を使った正規化を説明します。
2024-10-11

4.0 トランスフォーマーの数理 - セルフアテンションとマルチヘッドアテンションの仕組み
トランスフォーマーモデルにおける数理的な仕組みを解説します。セルフアテンションメカニズムの行列演算や、マルチヘッドアテンションによる文脈理解の向上について詳しく説明します。
2024-10-11

3.2 線形代数とベクトル空間 - LLMにおける単語埋め込みの数理的基盤
線形代数はLLM(大規模言語モデル)の数理的基盤です。単語の埋め込みやベクトル空間内での操作、コサイン類似度を用いた単語の関係性の解析について詳しく解説します。
2024-10-10

3.1 確率論と統計 - LLMにおける言語生成と予測の基礎
確率論と統計は、LLMの言語生成や次の単語の予測において重要な役割を果たします。n-gramモデル、マルコフ連鎖、最大尤度推定(MLE)など、LLMの予測精度を向上させる数理的手法について解説します。
2024-10-09

3.0 LLMの数理モデル - 確率論と線形代数の基礎解説
LLMの動作に深く関わる数理モデルについて解説します。確率論や統計がどのように言語生成に使われ、線形代数が単語埋め込みやベクトル空間での計算にどのように貢献しているのかを詳しく説明します。
2024-10-08
タグ
検索履歴
エンジニア向け 286
大規模言語モデル 268
マルコフ連鎖 265
自動要約 262
データ前処理 259
NLP トランスフォーマー 257
言語モデル 251
教育AI 246
パーソナライズドコンテンツ 240
トークン化 239
注意メカニズム 238
セルフアテンション 236
生成型要約 236
ロス計算 234
ミニバッチ学習 233
線形代数 233
数学的アプローチ 232
トレーニング 231
GPT-2 テキスト生成 229
LLM 要約 228
LLM テキスト生成 226
クロスエントロピー損失 226
自動翻訳 226
自然言語処理 翻訳 223
LLM リアルタイム処理 222
バイアス 問題 222
ニュース記事生成 220
コード生成 219
GPT ファインチューニング 215
FAQシステム 213
チーム

任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。

下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。