LLM入門
このページでは、AI技術に関心のある方のために、LLM(大規模言語モデル)の基礎から応用までをわかりやすく解説します。
LangChainでRAGを構築する方法とは?RetrieverからLLM連携まで徹底解説|LLM入門 5.2
LangChainはRAG構築において、Retriever・LLM・プロンプトを一貫してつなぐフレームワークです。本記事では、各モジュールの役割と構成例、導入のメリット・注意点までを、実装の視点からわかりやすく解説します。
2025-02-235.3 NLUとNLGの活用|高度なチャットボットの設計と実装
NLU(自然言語理解)とNLG(自然言語生成)の技術を使用して、よりインテリジェントなチャットボットを構築する方法をPythonの実装例とともに解説。
2024-11-194.3 LLMのモデル圧縮技術|知識蒸留、量子化、プルーニングの解説
知識蒸留、量子化、プルーニングなどのモデル圧縮技術を使い、LLMの計算コストと推論速度を改善する方法を解説します。Pythonの実装例も紹介。
2024-11-154.2 LLMの推論速度を最適化する方法|バッチ推論と半精度推論の活用
LLMの推論速度を改善するための技術を解説。バッチ推論、ONNX Runtime、半精度推論(FP16)など、効率的な推論手法とその実装例を紹介します。
2024-11-144.1 LLMのモデル圧縮技術|効率的な量子化と知識蒸留
LLMのモデル圧縮技術を解説。量子化、知識蒸留、プルーニングの実装例を紹介し、推論速度とリソース効率を向上させる方法を学びます。
2024-11-134.0 LLMのモデル圧縮と推論速度の最適化|効率的なパフォーマンス改善
LLMのモデル圧縮技術と推論速度の最適化手法を解説。量子化、知識蒸留、ONNXを使用したPython実装例で効率的なLLMのデプロイをサポート。
2024-11-123.1 LLMのサブワードトークナイザーの使用方法|BERTやGPT-2でのトークン化の解説
サブワードトークナイザーを使用したLLMのトークン化方法を解説。Hugging FaceのBERTやGPT-2トークナイザーを使用し、Pythonコード例で具体的な実装方法を紹介します。
2024-11-103.0 LLMのトークン化とデータ前処理の自動化|効率的なデータクレンジングと前処理パイプライン
LLMのトレーニングに必要なトークン化とデータ前処理の自動化について解説。Pythonコード例とHugging Faceライブラリを使用し、データクレンジングと効率的な前処理パイプラインの構築方法を紹介します。
2024-11-092.3 LLMのトレーニング実行とモデル評価|Pythonによるトレーニングと評価手法
LLMのトレーニングと評価の手順をPythonコード例と共に紹介。Hugging Face Transformersを使用したBERTモデルのトレーニング、評価指標の解説、モデルの保存方法を説明します。
2024-11-082.2 LLMのトレーニングデータ準備と前処理|Pythonでのデータクレンジングとトークナイゼーション
LLMのファインチューニングに必要なデータ準備と前処理を解説。Pythonを使用したデータクレンジング、トークナイゼーション、データセット整理の方法を紹介します。
2024-11-072.1 Hugging Face Transformersを使ったモデルのファインチューニング|BERTのPython実装例
Hugging FaceのTransformersライブラリを使って、BERTモデルのファインチューニングを行う方法を解説します。Pythonコード例と共に、データ前処理やトレーニング設定のポイントも紹介。
2024-11-062.0 LLMモデルのファインチューニング|Hugging Faceを使った効率的な微調整手法
Hugging FaceのTransformersライブラリを使用して、LLMのファインチューニングを行う方法を解説。トレーニングデータの準備から評価までの具体的な手順を紹介。
2024-11-051.3 LLM推論APIにおけるキャッシュ戦略|高速化と負荷軽減のためのベストプラクティス
LLM推論APIのパフォーマンスを向上させるキャッシュ戦略について解説。Redisを使った具体的な実装例やキャッシュ最適化のベストプラクティスを紹介します。
2024-11-041.1 FlaskとFastAPIによるLLM APIの基本設計 | シンプルなPython API構築ガイド
FlaskとFastAPIを使用して、LLM(大規模言語モデル)APIの設計と実装を学びましょう。基本的なエンドポイントの作成、リクエスト処理、エラーハンドリングを含むシンプルなPythonガイドです。初心者から中級者まで、実践的なAPI構築に役立つ内容です。
2024-11-031.0 LLM API設計と実装ガイド | Flask & FastAPIチュートリアル
PythonフレームワークのFlaskやFastAPIを使ったLLM(大規模言語モデル)のAPI設計と実装方法を解説します。基本設計から、推論APIのスケーリング、キャッシュ戦略まで、効率的なLLM活用のための具体的な手法を紹介します。
2024-11-02LLM入門:Pythonを用いたLLMアプリケーション構築ガイド | API設計、微調整、デプロイ
Pythonエンジニア向けに、LLM(大規模言語モデル)を活用したアプリケーションの構築方法を徹底解説。FlaskやFastAPIを使ったAPI設計、モデルの微調整(ファインチューニング)、データ前処理の自動化、推論速度の最適化、Docker/Kubernetesを使ったデプロイまで、実践的な内容をカバーします。
2024-11-01
9.2 LLMの実装に向けたリソースと学習の提案 - 効果的なツールとコースの活用
LLM(大規模言語モデル)の実装に必要なリソースや学習方法を紹介します。オープンソースフレームワーク、クラウドプラットフォーム、データセット、オンラインコースなど、実践的なアプローチに必要なリソースを提供します。
2024-10-27
6.2 Pythonを使ったLLM実装例 | Hugging Face, OpenAI, Google Cloud, Azureを活用したテキスト生成
Pythonを使ってLLM(大規模言語モデル)を簡単に実装する方法をエンジニア向けに解説。Hugging Face、OpenAI、Google Cloud、Azureを使用したテキスト生成や感情分析の実装例を紹介します。
2024-09-26
6.1 LLMを試すためのオープンソースツールとAPIの紹介 | Hugging Face, OpenAI, Google Cloud, Azure
LLM(大規模言語モデル)を試すための主要なオープンソースツールやAPIをエンジニア向けに解説。Hugging Face、OpenAI、Google Cloud AI、Microsoft Azure Cognitive Servicesの特徴と使用方法を紹介し、簡単な実装例も提供。
2024-09-25
6.0 実際にLLMを試してみる | オープンソースツールと簡単な実装例
LLM(大規模言語モデル)を実際に試すためのオープンソースツールやAPIを紹介し、エンジニア向けにPythonを使った簡単な実装例を提供します。テキスト生成や会話ボットの構築、デプロイ方法についても解説。
2024-09-24
4.2 LLMによる質問応答システム | 高精度な回答生成とその応用例
LLM(大規模言語モデル)を活用した質問応答システムの仕組みと応用例をエンジニア向けに解説。カスタマーサポート、FAQ、検索エンジン強化など、様々な分野での実際の使用ケースを紹介。
2024-09-17
2.3 BERT, GPT, T5などの代表的なLLMモデルの解説 | 自然言語処理タスクへの応用
BERT、GPT、T5などの代表的なLLMモデルをエンジニア向けに解説。それぞれのモデルが持つ特徴と強み、適用されるNLPタスクについて詳しく説明します。プロジェクトに最適なモデルを選ぶためのガイド。
2024-09-10
2.0 LLMの基本的な仕組み | トランスフォーマーと注意機構の解説
LLM(大規模言語モデル)の基本的な仕組みをエンジニア向けに解説。トランスフォーマーモデル、注意機構(Attention Mechanism)、BERT、GPT、T5などの代表的なモデルの特徴を詳しく説明します。
2024-09-06