LLM入門
合計 10 件の記事があります。
現在 1 ページ中の 1 ページ目です。

2.0 LLMモデルのファインチューニング|Hugging Faceを使った効率的な微調整手法
Hugging FaceのTransformersライブラリを使用して、LLMのファインチューニングを行う方法を解説。トレーニングデータの準備から評価までの具体的な手順を紹介。
2024-11-05

9.2 LLMの実装に向けたリソースと学習の提案 - 効果的なツールとコースの活用
LLM(大規模言語モデル)の実装に必要なリソースや学習方法を紹介します。オープンソースフレームワーク、クラウドプラットフォーム、データセット、オンラインコースなど、実践的なアプローチに必要なリソースを提供します。
2024-10-27

6.1 LLMを試すためのオープンソースツールとAPIの紹介 | Hugging Face, OpenAI, Google Cloud, Azure
LLM(大規模言語モデル)を試すための主要なオープンソースツールやAPIをエンジニア向けに解説。Hugging Face、OpenAI、Google Cloud AI、Microsoft Azure Cognitive Servicesの特徴と使用方法を紹介し、簡単な実装例も提供。
2024-09-25

6.0 実際にLLMを試してみる | オープンソースツールと簡単な実装例
LLM(大規模言語モデル)を実際に試すためのオープンソースツールやAPIを紹介し、エンジニア向けにPythonを使った簡単な実装例を提供します。テキスト生成や会話ボットの構築、デプロイ方法についても解説。
2024-09-24

3.0 LLMのトレーニング方法 | データセット、前処理、ファインチューニングの解説
LLM(大規模言語モデル)のトレーニング方法をエンジニア向けに解説。データセットの前処理、トレーニングのステップ、ファインチューニングやトランスファーラーニングを活用した効率的なモデル構築の方法を詳述。
2024-09-11

2.3 BERT, GPT, T5などの代表的なLLMモデルの解説 | 自然言語処理タスクへの応用
BERT、GPT、T5などの代表的なLLMモデルをエンジニア向けに解説。それぞれのモデルが持つ特徴と強み、適用されるNLPタスクについて詳しく説明します。プロジェクトに最適なモデルを選ぶためのガイド。
2024-09-10

2.2 注意メカニズムの解説 | 自己注意とマルチヘッドアテンションによる文脈理解
LLM(大規模言語モデル)の基礎技術である注意メカニズムをエンジニア向けに解説。自己注意メカニズム、クエリ・キー・バリュー、スケールドドットプロダクトアテンション、マルチヘッドアテンションを用いた高度な文脈理解の仕組みを詳しく説明。
2024-09-09

2.0 LLMの基本的な仕組み | トランスフォーマーと注意機構の解説
LLM(大規模言語モデル)の基本的な仕組みをエンジニア向けに解説。トランスフォーマーモデル、注意機構(Attention Mechanism)、BERT、GPT、T5などの代表的なモデルの特徴を詳しく説明します。
2024-09-06

第1章 LLMって何?AIが文章を“理解して書く”時代のはじまり
LLM(大規模言語モデル)の基本的な定義、自然言語処理における役割、そして従来の機械学習モデルとの違いを解説。LLMの特徴とその応用例をエンジニア向けに詳しく紹介します。
2024-09-02

LLM入門: しくみから学ぶ 生成AIの基礎
自然言語処理で注目される大規模言語モデル(LLM)の仕組みやトレーニング方法、応用例をエンジニア向けに分かりやすく解説。GPTやBERTなどの最新モデルの解説も含む、実際にLLMを活用するための実践的なガイド。
2024-09-01
カテゴリー
検索履歴
会話履歴 413
エンジニア向け 343
マルコフ連鎖 310
大規模言語モデル 309
自動要約 306
NLP トランスフォーマー 301
言語モデル 295
データ前処理 293
パーソナライズドコンテンツ 292
教育AI 289
生成型要約 288
注意メカニズム 287
数学的アプローチ 284
トークン化 280
ミニバッチ学習 277
セルフアテンション 271
LLM 要約 270
クロスエントロピー損失 270
LLM テキスト生成 267
ロス計算 267
バイアス 問題 265
線形代数 263
GPT-2 テキスト生成 262
トレーニング 262
GPT テキスト生成 260
自動翻訳 258
LLM リアルタイム処理 256
自然言語処理 翻訳 256
サンプリング 253
コード生成 252
チーム

任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。

下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。