LLM入門
このページでは、AI技術に関心のある方のために、LLM(大規模言語モデル)の基礎から応用までをわかりやすく解説します。
7.1 LLMの大規模モデル進化 | 性能向上と技術的課題
LLMの大規模モデル化による性能向上と、計算リソースやトレーニングコストの課題を解説。エンジニアが対応すべき技術と今後の展望を紹介します。
2024-11-25
5.0 勾配降下法とモデル最適化 - LLMのトレーニング手法解説
勾配降下法は、LLM(大規模言語モデル)のトレーニングにおける重要な最適化手法です。クロスエントロピー損失やミニバッチ勾配降下法、勾配クリッピングを使ってモデルの精度を向上させる仕組みを解説します。
2024-10-13
4.2 マルチヘッドアテンションの数理 - トランスフォーマーモデルにおける文脈理解の強化
トランスフォーマーモデルのマルチヘッドアテンションについて詳しく解説します。各ヘッドが異なる視点から文中の単語間の関連性を捉える仕組みと、その数理的な背景について説明します。
2024-10-12
4.1 セルフアテンションメカニズム - トランスフォーマーモデルの数理的基盤
トランスフォーマーモデルのセルフアテンションメカニズムについて詳しく解説します。クエリ、キー、バリューを用いた行列演算による単語間の関連度計算と、ソフトマックス関数を使った正規化を説明します。
2024-10-11
4.0 トランスフォーマーの数理 - セルフアテンションとマルチヘッドアテンションの仕組み
トランスフォーマーモデルにおける数理的な仕組みを解説します。セルフアテンションメカニズムの行列演算や、マルチヘッドアテンションによる文脈理解の向上について詳しく説明します。
2024-10-11
3.2 線形代数とベクトル空間 - LLMにおける単語埋め込みの数理的基盤
線形代数はLLM(大規模言語モデル)の数理的基盤です。単語の埋め込みやベクトル空間内での操作、コサイン類似度を用いた単語の関係性の解析について詳しく解説します。
2024-10-10
LLM入門 - 数学で理解する大規模言語モデルの仕組み
大規模言語モデル(LLM)の基礎から応用までを初心者向けにわかりやすく解説。LLMの仕組み、トレーニング、活用方法を体系的に学べる入門ガイド。
2024-10-01
2.3 BERT, GPT, T5などの代表的なLLMモデルの解説 | 自然言語処理タスクへの応用
BERT、GPT、T5などの代表的なLLMモデルをエンジニア向けに解説。それぞれのモデルが持つ特徴と強み、適用されるNLPタスクについて詳しく説明します。プロジェクトに最適なモデルを選ぶためのガイド。
2024-09-10
2.2 注意メカニズムの解説 | 自己注意とマルチヘッドアテンションによる文脈理解
LLM(大規模言語モデル)の基礎技術である注意メカニズムをエンジニア向けに解説。自己注意メカニズム、クエリ・キー・バリュー、スケールドドットプロダクトアテンション、マルチヘッドアテンションを用いた高度な文脈理解の仕組みを詳しく説明。
2024-09-09
2.1 トランスフォーマーモデルの説明 | 自己注意メカニズムとエンコーダー・デコーダー構造
LLM(大規模言語モデル)に使われるトランスフォーマーモデルの仕組みを解説。自己注意メカニズム、エンコーダー・デコーダーアーキテクチャ、並列処理によるスケーラビリティなど、エンジニア向けにトランスフォーマーの基本を詳述。
2024-09-07
2.0 LLMの基本的な仕組み | トランスフォーマーと注意機構の解説
LLM(大規模言語モデル)の基本的な仕組みをエンジニア向けに解説。トランスフォーマーモデル、注意機構(Attention Mechanism)、BERT、GPT、T5などの代表的なモデルの特徴を詳しく説明します。
2024-09-06