LLM入門
合計 13 件の記事があります。
現在 1 ページ中の 1 ページ目です。

人格・役割・意図の設計とは?|MCP入門 7.4|AIの“存在”をプロトコルで定義する方法
AIが人格を持ち、役割を柔軟に切り替え、意図を理解して発話する時代が始まろうとしています。本記事では、MCPによってこうした構成要素をどのように設計・再現し、対話的存在としてのAIを実現できるのかを解説します。
2025-04-05

LLM Memory APIとMCPの違いとは?|MCP入門 7.2|ユーザー記憶と文脈設計を統合する方法
ユーザー情報や履歴を保存するMemory APIと、構造的な文脈設計を担うMCPは、目的も実装も異なります。本記事では両者の違いと補完関係、そして信頼性の高いプロンプト設計に向けた統合戦略を具体的に解説します。
2025-04-03

JSONスキーマによる状態制御の工夫とは?|MCP入門 6.4|一貫性あるAI応答を実現する構造的設計
生成AIの応答を安定化させるには、“状態”の明示が不可欠です。本記事では、MCP設計におけるJSONスキーマの活用方法を詳しく解説し、意図や画面状況をモデルに正しく伝える設計戦略を紹介します。
2025-03-31

ストラクチャード・コンテキスト vs ナチュラル・プロンプティングとは?|MCP入門 6.3|構造化と柔軟性を両立するプロンプト設計
生成AIに文脈を渡すには、JSON形式の構造化データか自然言語プロンプトか、どちらが適切か。本記事では、MCP設計において“ストラクチャード・コンテキスト”と“ナチュラル・プロンプティング”の違いと併用戦略を詳しく解説します。
2025-03-30

システムメッセージ vs ユーザープロンプトとは?|MCP入門 6.2|LLMの人格と応答品質を分ける設計手法
プロンプトには“誰が話すか”という役割の違いがあります。本記事では、システムメッセージとユーザープロンプトの違いを明確化し、モデルの態度・目的意識・人格形成に与える影響、MCP設計への応用を詳しく解説します。
2025-03-29

“明示的な制約”と“暗黙の指示”の違いとは?|MCP入門 6.1|AIが期待に応えるためのプロンプト設計術
生成AIは指示されたことだけでなく、空気や文脈を読むことも求められます。本記事では、プロンプトにおける“明示的な制約”と“暗黙の指示”の違いを解説し、MCP設計を通じて誤解を防ぎ、意図通りの応答を得るための設計手法を紹介します。
2025-03-28

モデルの“意図解釈”と状態伝達とは?|MCP入門 6.0|プロンプトに込められた意図を理解するLLM設計
LLMが正しく応答するためには、文脈だけでなく“何を求められているか”という意図を読み取る力が不可欠です。本章では、明示的な制約・システムメッセージ・構造化文脈などを通じて、モデルがどのように内部状態を形成するかを解説します。
2025-03-27

ツール活用 / マルチエージェントシステムでのMCP適用例とは?|MCP入門 5.4|複数エージェントとツールを統合する文脈設計
ツール活用やマルチエージェント設計では、AIが状態や目的を共有しながら協調する必要があります。MCPを活用することで、共通の文脈管理・状態同期・出力整理を実現し、複雑な連携を安定運用できる方法を解説します。
2025-03-26

MCPの実践設計パターンとは?|第5章|チャット・RAG・ツール統合まで網羅的に解説
この章では、Model Context Protocol(MCP)を具体的にどう活用すべきか、チャットボット、タスク切替、RAG、マルチエージェントシステムといった現実的ユースケースごとに設計パターンを解説します。
2025-03-22

システムインストラクションの設計パターンとは?|MCP入門 3.1|生成AIの人格と振る舞いの設計
生成AIの出力に一貫性と目的を持たせるには、システムインストラクションの設計が重要です。MCPにおける役割、トーン、ルール、タスク駆動型など、代表的な設計パターンをわかりやすく解説します。
2025-03-13

MCP実装の基本設計パターンとは?|MCP入門 第3章|生成AIをプロダクトに組み込むための考え方
MCP(Model Context Protocol)をプロダクトや業務システムに実装するには、文脈・状態・履歴・ユーザー情報の扱い方を設計パターンとして整理する必要があります。本章ではMCPの構造化・再現性・スケーラビリティを支える4つの設計手法を紹介します。
2025-03-12

コンテキストウィンドウとは?生成AIにおける文脈の限界とMCP設計|MCP入門 1.3
生成AIが扱える“文脈”には上限があります。それがコンテキストウィンドウです。トークン数の制限とは何か、なぜ応答が急に崩れるのか、MCP(Model Context Protocol)における設計の工夫まで、丁寧に解説します。
2025-03-05

大規模言語モデルと対話型AIの「思考状態」を設計するプロトコルの基礎と応用
ChatGPTをはじめとする大規模言語モデル(LLM)の応答精度を高める鍵、それがModel Context Protocol(MCP)です。AIに“文脈”を理解させる新しい設計手法を、初心者にもわかりやすく解説します。
2025-03-01
カテゴリー
タグ
検索履歴
エンジニア向け 300
大規模言語モデル 276
マルコフ連鎖 274
自動要約 271
データ前処理 269
NLP トランスフォーマー 265
言語モデル 261
教育AI 256
パーソナライズドコンテンツ 253
トークン化 250
数学的アプローチ 248
注意メカニズム 248
生成型要約 247
セルフアテンション 244
ミニバッチ学習 242
ロス計算 242
線形代数 240
トレーニング 239
GPT-2 テキスト生成 238
LLM 要約 237
クロスエントロピー損失 237
LLM テキスト生成 235
自動翻訳 235
バイアス 問題 232
LLM リアルタイム処理 231
自然言語処理 翻訳 230
ニュース記事生成 228
コード生成 226
GPT テキスト生成 225
GPT ファインチューニング 224
チーム

任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。

下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。