LLM入門
合計 5 件の記事があります。
現在 1 ページ中の 1 ページ目です。

7.2 省リソースでのLLMトレーニング | モデル蒸留、量子化、分散トレーニングの手法
LLM(大規模言語モデル)を省リソースでトレーニングするための技術を解説。モデル蒸留、量子化、分散トレーニング、データ効率の改善など、エンジニア向けにリソース削減のための手法を紹介します。
2024-09-29

3.3 ファインチューニングとトランスファーラーニング | LLMの効率的なトレーニング方法
LLM(大規模言語モデル)のトレーニングにおけるファインチューニングとトランスファーラーニングをエンジニア向けに解説。既存のモデルを特定タスクに最適化し、効率的に新しいタスクに対応させる手法について詳述。
2024-09-14

3.0 LLMのトレーニング方法 | データセット、前処理、ファインチューニングの解説
LLM(大規模言語モデル)のトレーニング方法をエンジニア向けに解説。データセットの前処理、トレーニングのステップ、ファインチューニングやトランスファーラーニングを活用した効率的なモデル構築の方法を詳述。
2024-09-11

1.3 LLMと機械学習の違い | トランスフォーマー、トランスファーラーニング、汎用性の比較
LLM(大規模言語モデル)と従来の機械学習(ML)モデルの違いを解説。トランスフォーマーアーキテクチャの利点、汎用性、データスケーラビリティ、トランスファーラーニングの活用をエンジニア向けに詳しく説明。
2024-09-05

1.2 LLMの自然言語処理における役割 | テキスト生成、質問応答、翻訳、コード生成の応用
LLM(大規模言語モデル)と従来の機械学習(ML)モデルの違いを解説。トランスフォーマーアーキテクチャの利点、汎用性、データスケーラビリティ、トランスファーラーニングの活用をエンジニア向けに詳しく説明。
2024-09-04
検索履歴
大規模言語モデル 113
自動要約 110
マルコフ連鎖 106
パーソナライズドコンテンツ 98
LLM リアルタイム処理 96
NLP トランスフォーマー 95
マルコフモデル 95
GPT-2 テキスト生成 94
自然言語処理 翻訳 94
Azure テキスト生成 93
言語モデル 91
カスタマーサポート 90
セルフアテンション 90
データ前処理 90
トレーニング 90
LLM 要約 89
エンジニア向け 89
コード生成 89
ロス計算 89
自動翻訳 89
BERT 質問応答 88
GPT ファインチューニング 87
ニュース記事生成 87
教育AI 85
線形代数 85
LLM 翻訳 84
FAQシステム 83
LLM テキスト生成 83
BERT トランスファーラーニング 82
自然言語生成 81
チーム

任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。

下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。