LLM入門
合計 3 件の記事があります。
現在 1 ページ中の 1 ページ目です。

1.2 LLM推論APIのスケーリング|水平スケーリング、ロードバランシング、キャッシュ戦略の実装
LLM推論APIのパフォーマンス向上方法を紹介します。水平スケーリング、ロードバランシング、Redisキャッシュ戦略を使用した効率的なAPI設計の実装例を解説。
2024-11-04

1.1 FlaskとFastAPIによるLLM APIの基本設計 | シンプルなPython API構築ガイド
FlaskとFastAPIを使用して、LLM(大規模言語モデル)APIの設計と実装を学びましょう。基本的なエンドポイントの作成、リクエスト処理、エラーハンドリングを含むシンプルなPythonガイドです。初心者から中級者まで、実践的なAPI構築に役立つ内容です。
2024-11-03

1.0 LLM API設計と実装ガイド | Flask & FastAPIチュートリアル
PythonフレームワークのFlaskやFastAPIを使ったLLM(大規模言語モデル)のAPI設計と実装方法を解説します。基本設計から、推論APIのスケーリング、キャッシュ戦略まで、効率的なLLM活用のための具体的な手法を紹介します。
2024-11-02
カテゴリー
検索履歴
会話履歴 406
エンジニア向け 343
マルコフ連鎖 310
大規模言語モデル 309
自動要約 306
NLP トランスフォーマー 301
言語モデル 294
データ前処理 293
パーソナライズドコンテンツ 292
教育AI 289
生成型要約 288
注意メカニズム 287
数学的アプローチ 284
トークン化 280
ミニバッチ学習 277
セルフアテンション 271
LLM 要約 270
クロスエントロピー損失 270
LLM テキスト生成 267
ロス計算 267
バイアス 問題 265
線形代数 263
GPT-2 テキスト生成 262
トレーニング 262
GPT テキスト生成 260
自動翻訳 258
LLM リアルタイム処理 256
自然言語処理 翻訳 256
コード生成 252
サンプリング 252
チーム

任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。

下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。