LLM入門


合計 12 件の記事があります。 現在 1 ページ中の 1 ページ目です。

ドキュメントベース質問応答(RAG)でのContext設計とは?|MCP入門 5.3|情報の構造化で精度と説明力を高める方法

RAG(検索補助生成)で生成AIが正確に応答するためには、検索結果をどのように文脈化するかが鍵です。MCP設計により、取得情報のスロット化・優先度付け・役割づけを行い、安定した回答と説明責任のある出力を実現する方法を解説します。
2025-03-25

RAGを強化するハイブリッド検索とMulti-Vector戦略とは?検索の多視点化と精度向上の設計|LLM入門 7.2

意味検索とキーワード検索を組み合わせるハイブリッド検索、複数の視点から検索するMulti-Vector RAG。どちらもRetrieverの精度と柔軟性を高める先進的な手法です。本記事では構成・効果・導入の注意点を解説します。
2025-03-05

RAGにおける幻覚とは?情報の過不足を防ぎ生成精度を高める設計法|LLM入門 7.1

RAG構成でも、LLMによる幻覚(hallucination)は発生します。本記事では、Retriever精度、プロンプト設計、出典明示などにより幻覚を抑える具体的な方法と、検知・評価の技術までを丁寧に解説します。
2025-03-04

RAG設計におけるトークン制限への対処法とは?情報量と生成精度を両立する工夫|LLM入門 6.4

生成AIにはトークン数の上限という物理的な制約があります。本記事では、Retriever出力やプロンプトを設計する際に考慮すべきトークン制限と、その中で最も有効な情報を渡すための工夫と設計指針を解説します。
2025-03-02

RAGにおけるプロンプト合成の設計パターンとは?文脈統合で生成精度を高める方法|LLM入門 6.3

Retrieverで得た情報をLLMにどう渡すかが、RAGの成否を分けます。本記事では、文書構造ごとのプロンプト合成パターンとその効果、生成品質を高めるための設計指針を具体的に解説します。
2025-03-01

セマンティック検索とキーワード検索の違いとは?RAGの精度を左右する検索技術|LLM入門 4.4

RAGでは従来のキーワード検索ではなく、意味ベースのセマンティック検索が活用されます。本記事では、両者の違いと特性、ハイブリッド検索の活用法までを比較しながら、実務での使い分け方を丁寧に解説します。
2025-02-20

RAGの回答精度を左右するコンテキスト整形とは?LLMへの最適な情報の渡し方|LLM入門 4.3

RAGにおいてRetrieverが抽出した情報をどのように整形し、LLMに渡すかは、出力の質に直結します。本記事では、プロンプト設計・チャンク構造・トークン最適化など、回答品質を高めるための整形技術を詳しく解説します。
2025-02-19

RAGに適したベクトル検索エンジンとは?FAISS・Weaviate・Pinecone徹底比較|LLM入門 4.2

RAGの検索性能を支えるのがベクトル検索エンジンです。本記事では、FAISS・Weaviate・Pineconeといった代表的エンジンの特徴を比較し、導入時に重視すべき観点や選定ポイントをわかりやすく解説します。
2025-02-18

RAGと従来の検索の違いとは?意味ベース検索と生成の融合を解説|LLM入門 2.3

RAGは従来のキーワード検索やFAQとは異なり、意味的に関連する情報を抽出し、生成AIによって自然な回答を構成します。本記事では、RAGの検索の仕組みと従来手法との違いを、事例と比較を交えてわかりやすく解説します。
2025-02-09

2.3 LLMのトレーニング実行とモデル評価|Pythonによるトレーニングと評価手法

LLMのトレーニングと評価の手順をPythonコード例と共に紹介。Hugging Face Transformersを使用したBERTモデルのトレーニング、評価指標の解説、モデルの保存方法を説明します。
2024-11-08

4.2 マルチヘッドアテンションの数理 - トランスフォーマーモデルにおける文脈理解の強化

トランスフォーマーモデルのマルチヘッドアテンションについて詳しく解説します。各ヘッドが異なる視点から文中の単語間の関連性を捉える仕組みと、その数理的な背景について説明します。
2024-10-12

4.1 セルフアテンションメカニズム - トランスフォーマーモデルの数理的基盤

トランスフォーマーモデルのセルフアテンションメカニズムについて詳しく解説します。クエリ、キー、バリューを用いた行列演算による単語間の関連度計算と、ソフトマックス関数を使った正規化を説明します。
2024-10-11

チーム

任 弘毅

株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。

下田 昌平

開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。