LLM入門


合計 12 件の記事があります。 現在 1 ページ中の 1 ページ目です。

RAGは本当に不要になるのか?長文対応LLM時代の検索戦略を再考する|LLM入門 7.3

GPT-4 128kやClaude 2の登場により、「検索せず全文渡す」構成が可能になってきました。本記事ではRetrieval不要論の背景と現実的な限界、そしてRAGの再定義について丁寧に解説します。
2025-03-06

RAGにおけるプロンプト合成の設計パターンとは?文脈統合で生成精度を高める方法|LLM入門 6.3

Retrieverで得た情報をLLMにどう渡すかが、RAGの成否を分けます。本記事では、文書構造ごとのプロンプト合成パターンとその効果、生成品質を高めるための設計指針を具体的に解説します。
2025-03-01

LangChainでRAGを構築する方法とは?RetrieverからLLM連携まで徹底解説|LLM入門 5.2

LangChainはRAG構築において、Retriever・LLM・プロンプトを一貫してつなぐフレームワークです。本記事では、各モジュールの役割と構成例、導入のメリット・注意点までを、実装の視点からわかりやすく解説します。
2025-02-23

RAGで社内ナレッジBotを構築する方法と導入効果|LLM入門 3.1

就業規則や業務手順が整備されていても、社員が情報を引き出せない現実があります。本記事では、RAGを活用して社内文書に基づくナレッジBotを構築し、社内問い合わせ削減と業務効率向上を実現した事例を紹介します。
2025-02-12

RAGの活用事例と導入効果とは?業務改善を実現する4つのユースケース|LLM入門 第3章

RAG(Retrieval-Augmented Generation)は、社内ナレッジBotやFAQ応答、自動応答の高度化に活用されています。本章では、実際のユースケースと導入プロセス、効果、注意点までを具体的に紹介し、実務に役立つ導入視点を提供します。
2025-02-11

RAGで業務AIを強化する方法とは?|LLM入門:検索と統合の仕組みを解説

RAG(Retrieval-Augmented Generation)は、大規模言語モデルに社内ナレッジやFAQを統合し、業務に使えるAIを構築する鍵です。本記事ではRAGの仕組み、活用例、導入のステップまで、わかりやすく解説します。
2025-02-01

7.3 マルチモーダルモデルとLLMの統合 | テキスト、画像、音声、映像の融合技術

マルチモーダルモデルとLLMの統合により、テキスト、画像、音声、映像を同時に処理することで、より深い理解と高精度な応答が可能になります。具体的な技術と応用例を紹介します。
2024-11-26

8.0 LLMにおける課題と今後の展望 - バイアス、計算リソース、プライバシーの問題と解決策

LLM(大規模言語モデル)が直面する課題と、今後の技術的な進展について解説します。計算リソース、データバイアス、解釈可能性、プライバシーの課題を克服するための取り組みと今後の展望を紹介します。
2024-10-22

7.2 質問応答システムと機械翻訳 - LLMによる自然言語処理の応用技術

LLM(大規模言語モデル)を活用した質問応答システムと機械翻訳の技術について詳しく解説します。カスタマーサポートの自動化、国際ビジネス、観光業界などでの具体的な応用例を紹介します。
2024-10-21

7.1 テキスト生成と自動要約 - LLMによる効率的なコンテンツ生成と要約技術

LLM(大規模言語モデル)を用いたテキスト生成と自動要約技術の仕組みを解説します。ニュース記事の自動生成、報告書の要約、チャットボット応答などの具体的な応用事例も紹介しています。
2024-10-20

LLM入門 - 数学で理解する大規模言語モデルの仕組み

大規模言語モデル(LLM)の基礎から応用までを初心者向けにわかりやすく解説。LLMの仕組み、トレーニング、活用方法を体系的に学べる入門ガイド。
2024-10-01

7.3 LLMとマルチモーダルモデルの統合 | 画像、音声、映像との連携による未来のAI

LLM(大規模言語モデル)とマルチモーダルモデルの統合について解説。テキスト以外のデータ(画像、音声、映像など)との連携により、AIシステムの認識能力が飛躍的に向上する具体的な応用例や技術的課題、未来の展望を紹介。
2024-09-30