LLM入門
合計 13 件の記事があります。
現在 1 ページ中の 1 ページ目です。

5.3 NLUとNLGの活用|高度なチャットボットの設計と実装
NLU(自然言語理解)とNLG(自然言語生成)の技術を使用して、よりインテリジェントなチャットボットを構築する方法をPythonの実装例とともに解説。
2024-11-19

3.1 LLMのサブワードトークナイザーの使用方法|BERTやGPT-2でのトークン化の解説
サブワードトークナイザーを使用したLLMのトークン化方法を解説。Hugging FaceのBERTやGPT-2トークナイザーを使用し、Pythonコード例で具体的な実装方法を紹介します。
2024-11-10

3.0 LLMのトークン化とデータ前処理の自動化|効率的なデータクレンジングと前処理パイプライン
LLMのトレーニングに必要なトークン化とデータ前処理の自動化について解説。Pythonコード例とHugging Faceライブラリを使用し、データクレンジングと効率的な前処理パイプラインの構築方法を紹介します。
2024-11-09

2.3 LLMのトレーニング実行とモデル評価|Pythonによるトレーニングと評価手法
LLMのトレーニングと評価の手順をPythonコード例と共に紹介。Hugging Face Transformersを使用したBERTモデルのトレーニング、評価指標の解説、モデルの保存方法を説明します。
2024-11-08

2.2 LLMのトレーニングデータ準備と前処理|Pythonでのデータクレンジングとトークナイゼーション
LLMのファインチューニングに必要なデータ準備と前処理を解説。Pythonを使用したデータクレンジング、トークナイゼーション、データセット整理の方法を紹介します。
2024-11-07

2.1 Hugging Face Transformersを使ったモデルのファインチューニング|BERTのPython実装例
Hugging FaceのTransformersライブラリを使って、BERTモデルのファインチューニングを行う方法を解説します。Pythonコード例と共に、データ前処理やトレーニング設定のポイントも紹介。
2024-11-06

2.0 LLMモデルのファインチューニング|Hugging Faceを使った効率的な微調整手法
Hugging FaceのTransformersライブラリを使用して、LLMのファインチューニングを行う方法を解説。トレーニングデータの準備から評価までの具体的な手順を紹介。
2024-11-05

1.3 LLM推論APIにおけるキャッシュ戦略|高速化と負荷軽減のためのベストプラクティス
LLM推論APIのパフォーマンスを向上させるキャッシュ戦略について解説。Redisを使った具体的な実装例やキャッシュ最適化のベストプラクティスを紹介します。
2024-11-04

LLM入門:Pythonを用いたLLMアプリケーション構築ガイド | API設計、微調整、デプロイ
Pythonエンジニア向けに、LLM(大規模言語モデル)を活用したアプリケーションの構築方法を徹底解説。FlaskやFastAPIを使ったAPI設計、モデルの微調整(ファインチューニング)、データ前処理の自動化、推論速度の最適化、Docker/Kubernetesを使ったデプロイまで、実践的な内容をカバーします。
2024-11-01

9.2 LLMの実装に向けたリソースと学習の提案 - 効果的なツールとコースの活用
LLM(大規模言語モデル)の実装に必要なリソースや学習方法を紹介します。オープンソースフレームワーク、クラウドプラットフォーム、データセット、オンラインコースなど、実践的なアプローチに必要なリソースを提供します。
2024-10-27

6.2 Pythonを使ったLLM実装例 | Hugging Face, OpenAI, Google Cloud, Azureを活用したテキスト生成
Pythonを使ってLLM(大規模言語モデル)を簡単に実装する方法をエンジニア向けに解説。Hugging Face、OpenAI、Google Cloud、Azureを使用したテキスト生成や感情分析の実装例を紹介します。
2024-09-26

6.1 LLMを試すためのオープンソースツールとAPIの紹介 | Hugging Face, OpenAI, Google Cloud, Azure
LLM(大規模言語モデル)を試すための主要なオープンソースツールやAPIをエンジニア向けに解説。Hugging Face、OpenAI、Google Cloud AI、Microsoft Azure Cognitive Servicesの特徴と使用方法を紹介し、簡単な実装例も提供。
2024-09-25

6.0 実際にLLMを試してみる | オープンソースツールと簡単な実装例
LLM(大規模言語モデル)を実際に試すためのオープンソースツールやAPIを紹介し、エンジニア向けにPythonを使った簡単な実装例を提供します。テキスト生成や会話ボットの構築、デプロイ方法についても解説。
2024-09-24
カテゴリー
検索履歴
会話履歴 490
エンジニア向け 348
マルコフ連鎖 313
大規模言語モデル 311
自動要約 309
NLP トランスフォーマー 304
データ前処理 298
言語モデル 298
パーソナライズドコンテンツ 295
生成型要約 295
注意メカニズム 293
教育AI 292
数学的アプローチ 287
トークン化 285
ミニバッチ学習 280
クロスエントロピー損失 274
LLM 要約 273
セルフアテンション 273
バイアス 問題 271
LLM テキスト生成 269
ロス計算 269
GPT テキスト生成 265
線形代数 265
GPT-2 テキスト生成 264
トレーニング 263
自動翻訳 260
バッチサイズ 258
自然言語処理 翻訳 258
LLM リアルタイム処理 257
抽出型要約 257
チーム

任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。

下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。