LLM入門
合計 8 件の記事があります。
現在 1 ページ中の 1 ページ目です。

RAGとMCPの関係とは?RetrieverとLLMの役割分担を明確にする設計法|LLM入門 6.1
RAG構成を安定的に運用するには、RetrieverとLLMの責任範囲を明確にする必要があります。本記事では、MCP(Model Context Protocol)を活用して、指示・文脈・入力の3層に分けた設計の考え方を解説します。
2025-02-27

RAGで専門文書を活用する方法|法務・医療・教育分野での事例と効果|LLM入門 3.3
法律文書、医療ガイドライン、教育要綱など、専門性の高い情報を誰もが使いやすくするにはどうすればよいか。本記事では、RAGを活用して専門文書を自然言語で引き出す仕組みと、実際の活用事例を丁寧に解説します。
2025-02-14

RAGでFAQ対応を自動化する方法と効果とは?顧客サポートをAIで強化|LLM入門 3.2
RAGを活用したFAQ対応Botは、顧客の自然な質問に対して意味ベースで文書を検索し、正確でわかりやすい回答を生成します。本記事では、EC事業者の導入事例とともに、設計・運用のポイントや導入効果を具体的に解説します。
2025-02-13

RAGと従来の検索の違いとは?意味ベース検索と生成の融合を解説|LLM入門 2.3
RAGは従来のキーワード検索やFAQとは異なり、意味的に関連する情報を抽出し、生成AIによって自然な回答を構成します。本記事では、RAGの検索の仕組みと従来手法との違いを、事例と比較を交えてわかりやすく解説します。
2025-02-09

RAGの中核構造:RetrieverとGeneratorの役割と分離設計|LLM入門 2.2
RAGにおいて、Retriever(検索部)とGenerator(生成部)の明確な分離は高精度な応答生成の鍵となります。本記事では、それぞれの役割、構造、設計上のメリットについて詳しく解説し、柔軟で拡張性のあるAI構築のための基盤を紹介します。
2025-02-08

RAGとは?検索と生成を組み合わせた新しいAIの仕組み|LLM入門 2.1
RAG(Retrieval-Augmented Generation)は、外部知識を検索してLLMの応答に活かす次世代アーキテクチャです。本記事では、RAGの基本フローや構成要素、従来の生成AIとの違いを図解的にわかりやすく解説します。
2025-02-07

RAGとは何か?検索と生成をつなぐ新しいAIアーキテクチャの全体像|LLM入門 第2章
RAG(Retrieval-Augmented Generation)は、検索と生成を組み合わせた新しい生成AIの構造です。本章では、RAGの基本構造、RetrieverとGeneratorの役割、従来の検索との違い、得意・不得意なケースまで、全体像を体系的に解説します。
2025-02-06

RAGで業務AIを強化する方法とは?|LLM入門:検索と統合の仕組みを解説
RAG(Retrieval-Augmented Generation)は、大規模言語モデルに社内ナレッジやFAQを統合し、業務に使えるAIを構築する鍵です。本記事ではRAGの仕組み、活用例、導入のステップまで、わかりやすく解説します。
2025-02-01
カテゴリー
検索履歴
会話履歴 677
エンジニア向け 382
マルコフ連鎖 359
自動要約 356
大規模言語モデル 354
NLP トランスフォーマー 342
注意メカニズム 342
生成型要約 341
言語モデル 338
トークン化 336
数学的アプローチ 333
教育AI 332
パーソナライズドコンテンツ 329
データ前処理 328
ミニバッチ学習 324
LLM 要約 317
LLM テキスト生成 316
クロスエントロピー損失 316
GPT テキスト生成 312
ロス計算 307
GPT-2 テキスト生成 305
トレーニング 304
セルフアテンション 302
自動翻訳 299
バイアス 問題 298
自然言語処理 翻訳 295
コード生成 292
線形代数 292
バッチサイズ 291
LLM リアルタイム処理 289
チーム

任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。

下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。