LLM入門
合計 4 件の記事があります。
現在 1 ページ中の 1 ページ目です。

9.1 LLMを理解するための次のステップ - 実践的な学習方法とプロジェクト参加のすすめ
LLM(大規模言語モデル)の基礎を学んだエンジニアが、さらなる学びを進めるための次のステップを紹介します。研究論文の精読、実践的プロジェクトの参加、モデルのカスタマイズや最適化手法について詳しく解説します。
2024-10-26

8.1 モデルサイズと計算コスト - LLMの効率的な運用とコスト削減の技術
LLM(大規模言語モデル)のモデルサイズと計算コストに関する課題を解説し、量子化やプルーニングなどのモデル圧縮技術や、分散学習を通じたトレーニングコスト削減の方法を紹介します。
2024-10-23

6.2 ミニバッチ学習と計算効率 - 大規模データセットの効率的なトレーニング手法
ミニバッチ学習は、大規模データセットを効率的にトレーニングするための手法です。計算効率の向上、学習率の調整、バッチサイズの最適化など、効率的なモデル構築を支える技術について解説します。
2024-10-18

3.2 LLMのトレーニングステップ | フォワードプロパゲーションとバックプロパゲーションの解説
LLM(大規模言語モデル)のトレーニングプロセスをエンジニア向けに解説。初期化からフォワードプロパゲーション、ロス計算、バックプロパゲーションまで、トレーニングの主要なステップと学習率やハイパーパラメータ調整の重要性について説明します。
2024-09-13
検索履歴
大規模言語モデル 115
自動要約 111
マルコフ連鎖 107
パーソナライズドコンテンツ 99
LLM リアルタイム処理 98
GPT-2 テキスト生成 95
NLP トランスフォーマー 95
マルコフモデル 95
自然言語処理 翻訳 95
Azure テキスト生成 94
言語モデル 92
LLM 要約 91
カスタマーサポート 91
セルフアテンション 91
データ前処理 91
トレーニング 91
ロス計算 91
エンジニア向け 90
コード生成 90
自動翻訳 90
BERT 質問応答 89
ニュース記事生成 88
GPT ファインチューニング 87
線形代数 86
LLM テキスト生成 85
LLM 翻訳 85
教育AI 85
FAQシステム 84
BERT トランスファーラーニング 83
自然言語生成 82
チーム

任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。

下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。