LLM入門


合計 14 件の記事があります。 現在 1 ページ中の 1 ページ目です。

9.2 LLMの実装に向けたリソースと学習の提案 - 効果的なツールとコースの活用

LLM(大規模言語モデル)の実装に必要なリソースや学習方法を紹介します。オープンソースフレームワーク、クラウドプラットフォーム、データセット、オンラインコースなど、実践的なアプローチに必要なリソースを提供します。
2024-10-27

9.1 LLMを理解するための次のステップ - 実践的な学習方法とプロジェクト参加のすすめ

LLM(大規模言語モデル)の基礎を学んだエンジニアが、さらなる学びを進めるための次のステップを紹介します。研究論文の精読、実践的プロジェクトの参加、モデルのカスタマイズや最適化手法について詳しく解説します。
2024-10-26

8.2 LLMにおけるバイアスと倫理的課題 - 公平で信頼性の高いAIの実現に向けた取り組み

LLM(大規模言語モデル)が抱えるバイアスと倫理的課題について解説し、データバイアス軽減の技術や説明可能なAI(XAI)の役割を紹介します。より公平で信頼性の高いAIシステムを構築するための今後の展望も説明します。
2024-10-24

7.0 LLMの具体的な応用例 - 自然言語生成、機械翻訳、医療、法律、教育分野の利用事例

LLM(大規模言語モデル)は、自然言語生成、機械翻訳、医療、法律、教育など、様々な分野で幅広く応用されています。具体的な応用事例を通じて、LLMの現実世界での活用方法を紹介します。
2024-10-19

7.2 省リソースでのLLMトレーニング | モデル蒸留、量子化、分散トレーニングの手法

LLM(大規模言語モデル)を省リソースでトレーニングするための技術を解説。モデル蒸留、量子化、分散トレーニング、データ効率の改善など、エンジニア向けにリソース削減のための手法を紹介します。
2024-09-29

7.1 LLMの大規模モデル進化 | モデルサイズの拡大とその課題、技術的アプローチ

LLM(大規模言語モデル)の進化について解説。モデルサイズの急速な拡大とそれに伴う課題、そして効率的なトレーニング手法や量子化技術など、技術的なアプローチを紹介します。
2024-09-28

6.2 Pythonを使ったLLM実装例 | Hugging Face, OpenAI, Google Cloud, Azureを活用したテキスト生成

Pythonを使ってLLM(大規模言語モデル)を簡単に実装する方法をエンジニア向けに解説。Hugging Face、OpenAI、Google Cloud、Azureを使用したテキスト生成や感情分析の実装例を紹介します。
2024-09-26

6.1 LLMを試すためのオープンソースツールとAPIの紹介 | Hugging Face, OpenAI, Google Cloud, Azure

LLM(大規模言語モデル)を試すための主要なオープンソースツールやAPIをエンジニア向けに解説。Hugging Face、OpenAI、Google Cloud AI、Microsoft Azure Cognitive Servicesの特徴と使用方法を紹介し、簡単な実装例も提供。
2024-09-25

6.0 実際にLLMを試してみる | オープンソースツールと簡単な実装例

LLM(大規模言語モデル)を実際に試すためのオープンソースツールやAPIを紹介し、エンジニア向けにPythonを使った簡単な実装例を提供します。テキスト生成や会話ボットの構築、デプロイ方法についても解説。
2024-09-24

5.2 LLMの計算リソースとコストの課題 | 最適化手法とクラウド活用

LLM(大規模言語モデル)の運用に伴う計算リソースとコストの課題をエンジニア向けに解説。モデル圧縮、量子化、分散トレーニングなどの最適化手法や、クラウドサービスを活用した効率的なリソース管理の方法について紹介。
2024-09-22

4.3 LLMによる翻訳と要約 | 高度な文脈理解による効率的な情報処理

LLM(大規模言語モデル)を活用した翻訳と要約の仕組みをエンジニア向けに解説。トランスフォーマーモデルを活用し、翻訳と要約がどのように実現されるか、具体的な応用例と共に紹介。
2024-09-18

2.3 BERT, GPT, T5などの代表的なLLMモデルの解説 | 自然言語処理タスクへの応用

BERT、GPT、T5などの代表的なLLMモデルをエンジニア向けに解説。それぞれのモデルが持つ特徴と強み、適用されるNLPタスクについて詳しく説明します。プロジェクトに最適なモデルを選ぶためのガイド。
2024-09-10

2.1 トランスフォーマーモデルの説明 | 自己注意メカニズムとエンコーダー・デコーダー構造

LLM(大規模言語モデル)に使われるトランスフォーマーモデルの仕組みを解説。自己注意メカニズム、エンコーダー・デコーダーアーキテクチャ、並列処理によるスケーラビリティなど、エンジニア向けにトランスフォーマーの基本を詳述。
2024-09-07

1.1 LLMとは何か: 定義と概要 | 大規模言語モデルの基本をエンジニア向けに解説

LLM(大規模言語モデル)の定義と概要をエンジニア向けに解説。パラメータの役割、事前学習とファインチューニング、自己教師あり学習の重要性など、LLMの基本を技術的に詳しく説明します。
2024-09-03