LLM入門
合計 2 件の記事があります。
現在 1 ページ中の 1 ページ目です。

9.0 LLMとエンジニアが向き合うべきポイント - モデル最適化、バイアス対応、倫理的責任
LLM(大規模言語モデル)を扱うエンジニアが向き合うべき重要なポイントを解説します。モデルの最適化やバイアス軽減、データプライバシーの保護、倫理的責任など、LLM開発における重要な側面について考察します。
2024-10-25

8.2 LLMにおけるバイアスと倫理的課題 - 公平で信頼性の高いAIの実現に向けた取り組み
LLM(大規模言語モデル)が抱えるバイアスと倫理的課題について解説し、データバイアス軽減の技術や説明可能なAI(XAI)の役割を紹介します。より公平で信頼性の高いAIシステムを構築するための今後の展望も説明します。
2024-10-24
検索履歴
大規模言語モデル 115
自動要約 111
マルコフ連鎖 107
パーソナライズドコンテンツ 99
LLM リアルタイム処理 98
GPT-2 テキスト生成 95
NLP トランスフォーマー 95
マルコフモデル 95
自然言語処理 翻訳 95
Azure テキスト生成 94
言語モデル 92
LLM 要約 91
カスタマーサポート 91
セルフアテンション 91
データ前処理 91
トレーニング 91
ロス計算 91
エンジニア向け 90
コード生成 90
自動翻訳 90
BERT 質問応答 89
ニュース記事生成 88
GPT ファインチューニング 87
線形代数 86
LLM テキスト生成 85
LLM 翻訳 85
教育AI 85
FAQシステム 84
BERT トランスファーラーニング 83
LLM オープンソースツール 82
チーム

任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。

下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。