LLM入門
このページでは、AI技術に関心のある方のために、LLM(大規模言語モデル)の基礎から応用までをわかりやすく解説します。
合計 6 件の記事があります。 |
現在 1 ページ中の 1 ページ目です。
4.2 マルチヘッドアテンションの数理 - トランスフォーマーモデルにおける文脈理解の強化
トランスフォーマーモデルのマルチヘッドアテンションについて詳しく解説します。各ヘッドが異なる視点から文中の単語間の関連性を捉える仕組みと、その数理的な背景について説明します。
2024-10-12
4.1 セルフアテンションメカニズム - トランスフォーマーモデルの数理的基盤
トランスフォーマーモデルのセルフアテンションメカニズムについて詳しく解説します。クエリ、キー、バリューを用いた行列演算による単語間の関連度計算と、ソフトマックス関数を使った正規化を説明します。
2024-10-11
4.0 トランスフォーマーの数理 - セルフアテンションとマルチヘッドアテンションの仕組み
トランスフォーマーモデルにおける数理的な仕組みを解説します。セルフアテンションメカニズムの行列演算や、マルチヘッドアテンションによる文脈理解の向上について詳しく説明します。
2024-10-11
トランスフォーマーモデルとは?仕組みと特徴をやさしく解説|LLM入門 2.4
自然言語処理を飛躍させたトランスフォーマーとは何か?本記事では、大規模言語モデル(LLM)を支える中核技術「トランスフォーマー」の構造やセルフアテンションの考え方を直感的に解説。GPTやChatGPTの背景にある革新的仕組みに触れます。
2024-10-06
LLMの構成要素とは?|LLM入門 2.2|トークン・ベクトル・パラメータで理解する内部構造
LLM(大規模言語モデル)の内部で何が起きているのか?本記事では、トークン化・埋め込み(Embedding)・パラメータ・アーキテクチャなど、モデルを構成する基本要素をわかりやすく解説します。自然言語を数値で処理するAIの仕組みを学びましょう。
2024-10-06
LLM入門 - 数学で理解する大規模言語モデルの仕組み
大規模言語モデル(LLM)の基礎から応用までを初心者向けにわかりやすく解説。LLMの仕組み、トレーニング、活用方法を体系的に学べる入門ガイド。
2024-10-01