LLM入門

このページでは、AI技術に関心のある方のために、LLM(大規模言語モデル)の基礎から応用までをわかりやすく解説します。


合計 3 件の記事があります。 | 現在 1 ページ中の 1 ページ目です。

7.1 LLMの大規模モデル進化 | 性能向上と技術的課題

LLMの大規模モデル化による性能向上と、計算リソースやトレーニングコストの課題を解説。エンジニアが対応すべき技術と今後の展望を紹介します。

2024-11-25

5.3 LLMのリアルタイム使用における課題 | レイテンシとスケーラビリティの対策

LLM(大規模言語モデル)をリアルタイムで使用する際の課題と対策をエンジニア向けに解説。レイテンシの低減やスケーラビリティの確保、モデル最適化の手法について詳述します。

2024-09-23

5.2 LLMの計算リソースとコストの課題 | 最適化手法とクラウド活用

LLM(大規模言語モデル)の運用に伴う計算リソースとコストの課題をエンジニア向けに解説。モデル圧縮、量子化、分散トレーニングなどの最適化手法や、クラウドサービスを活用した効率的なリソース管理の方法について紹介。

2024-09-22