Introduction to LLM

This page provides an easy-to-understand guide on LLMs (Large Language Models) from basics to applications for AI enthusiasts.


Total of 5 articles available. | Currently on page 1 of 1.

Chapter 2 — LLMs in Context: Concepts and Background

An accessible introduction to Chapter 2 of Understanding LLMs Through Math. Explore what Large Language Models are, why pretraining and parameters matter, how scaling laws shape model performance, and why Transformers revolutionized NLP. This chapter provides essential context before diving deeper into the mechanics of modern LLMs.

2025-09-07

3.2 LLM Training Steps: Forward Propagation, Backward Propagation, and Optimization

Explore the key steps in training Large Language Models (LLMs), including initialization, forward propagation, loss calculation, backward propagation, and hyperparameter tuning. Learn how these processes help optimize model performance.

2024-09-13

3.1 LLM Training: Dataset Selection and Preprocessing Techniques

Learn about dataset selection and preprocessing techniques for training Large Language Models (LLMs). Explore steps like noise removal, tokenization, normalization, and data balancing for optimized model performance.

2024-09-12

3.0 How to Train Large Language Models (LLMs): Data Preparation, Steps, and Fine-Tuning

Learn the key techniques for training Large Language Models (LLMs), including data preprocessing, forward and backward propagation, fine-tuning, and transfer learning. Optimize your model’s performance with efficient training methods.

2024-09-11

A Guide to LLMs (Large Language Models): Understanding the Foundations of Generative AI

Learn about large language models (LLMs), including GPT, BERT, and T5, their functionality, training processes, and practical applications in NLP. This guide provides insights for engineers interested in leveraging LLMs in various fields.

2024-09-01