LLM入門
合計 8 件の記事があります。
現在 1 ページ中の 1 ページ目です。

人格・役割・意図の設計とは?|MCP入門 7.4|AIの“存在”をプロトコルで定義する方法
AIが人格を持ち、役割を柔軟に切り替え、意図を理解して発話する時代が始まろうとしています。本記事では、MCPによってこうした構成要素をどのように設計・再現し、対話的存在としてのAIを実現できるのかを解説します。
2025-04-05

W3CのAI Context仕様とは?|MCP入門 7.3|文脈の国際標準化とMCPの役割
AIの意思決定や会話文脈を明示的に設計するため、W3CではAI Context仕様の標準化が進んでいます。本記事ではその動向と、MCPとの親和性や将来のマッピング可能性について詳しく解説します。
2025-04-04

モデルの“意図解釈”と状態伝達とは?|MCP入門 6.0|プロンプトに込められた意図を理解するLLM設計
LLMが正しく応答するためには、文脈だけでなく“何を求められているか”という意図を読み取る力が不可欠です。本章では、明示的な制約・システムメッセージ・構造化文脈などを通じて、モデルがどのように内部状態を形成するかを解説します。
2025-03-27

ツール活用 / マルチエージェントシステムでのMCP適用例とは?|MCP入門 5.4|複数エージェントとツールを統合する文脈設計
ツール活用やマルチエージェント設計では、AIが状態や目的を共有しながら協調する必要があります。MCPを活用することで、共通の文脈管理・状態同期・出力整理を実現し、複雑な連携を安定運用できる方法を解説します。
2025-03-26

ユーザー状態とモデル状態の同期とは?|MCP入門 3.4|生成AIの一貫した応答設計
生成AIの出力の一貫性を保つには、ユーザーとモデルの状態を同期させることが重要です。MCPでは、セッションメモリ、タスク管理、ステートマシン、感情トラッキングなどを活用して文脈と目的を揃える設計が求められます。
2025-03-16

OpenAI Function CallingとMCPの関係とは?|MCP入門 2.4|生成AIの構造化出力と実装設計
OpenAIのFunction Callingは、生成AIが構造化された出力を返す仕組みです。MCP(Model Context Protocol)の文脈・状態設計と深く関係し、再現性や拡張性の高いAI実装を支えます。本節ではその原理と設計のポイントを丁寧に解説します。
2025-03-11

大規模言語モデルと対話型AIの「思考状態」を設計するプロトコルの基礎と応用
ChatGPTをはじめとする大規模言語モデル(LLM)の応答精度を高める鍵、それがModel Context Protocol(MCP)です。AIに“文脈”を理解させる新しい設計手法を、初心者にもわかりやすく解説します。
2025-03-01

5.3 NLUとNLGの活用|高度なチャットボットの設計と実装
NLU(自然言語理解)とNLG(自然言語生成)の技術を使用して、よりインテリジェントなチャットボットを構築する方法をPythonの実装例とともに解説。
2024-11-19
カテゴリー
検索履歴
会話履歴 403
エンジニア向け 340
マルコフ連鎖 308
大規模言語モデル 306
自動要約 304
NLP トランスフォーマー 299
データ前処理 292
パーソナライズドコンテンツ 292
言語モデル 292
教育AI 287
生成型要約 286
注意メカニズム 284
数学的アプローチ 281
トークン化 280
ミニバッチ学習 275
セルフアテンション 270
LLM 要約 268
クロスエントロピー損失 268
ロス計算 266
LLM テキスト生成 265
バイアス 問題 263
線形代数 263
GPT-2 テキスト生成 261
トレーニング 261
GPT テキスト生成 258
自動翻訳 257
LLM リアルタイム処理 255
自然言語処理 翻訳 255
FAQシステム 251
コード生成 251
チーム

任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。

下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。