LLM入門
合計 2 件の記事があります。
現在 1 ページ中の 1 ページ目です。

9.1 LLMを理解するための次のステップ - 実践的な学習方法とプロジェクト参加のすすめ
LLM(大規模言語モデル)の基礎を学んだエンジニアが、さらなる学びを進めるための次のステップを紹介します。研究論文の精読、実践的プロジェクトの参加、モデルのカスタマイズや最適化手法について詳しく解説します。
2024-10-26

3.2 LLMのトレーニングステップ | フォワードプロパゲーションとバックプロパゲーションの解説
LLM(大規模言語モデル)のトレーニングプロセスをエンジニア向けに解説。初期化からフォワードプロパゲーション、ロス計算、バックプロパゲーションまで、トレーニングの主要なステップと学習率やハイパーパラメータ調整の重要性について説明します。
2024-09-13
検索履歴
大規模言語モデル 118
自動要約 115
マルコフ連鎖 111
LLM リアルタイム処理 103
パーソナライズドコンテンツ 102
NLP トランスフォーマー 100
Azure テキスト生成 99
自然言語処理 翻訳 99
GPT-2 テキスト生成 97
ロス計算 97
エンジニア向け 96
マルコフモデル 96
LLM 要約 95
自動翻訳 95
言語モデル 95
カスタマーサポート 94
データ前処理 94
BERT 質問応答 93
トレーニング 93
GPT ファインチューニング 92
コード生成 92
セルフアテンション 92
ニュース記事生成 91
線形代数 91
LLM テキスト生成 89
LLM 翻訳 88
教育AI 88
BERT トランスファーラーニング 86
FAQシステム 85
LLM オープンソースツール 85
チーム

任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。

下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。