LLM入門


合計 5 件の記事があります。 現在 1 ページ中の 1 ページ目です。

従来のプロンプト設計とMCPの違いとは?|MCP入門 2.2|生成AI設計の新常識

プロンプトエンジニアリングでは限界がある。MCP(Model Context Protocol)は、文脈と状態を分離・構造化することで、一貫性・拡張性・再現性を備えた生成AIの設計を可能にします。従来手法との違いを比較しながら丁寧に解説。
2025-03-09

MCPとは?生成AIの文脈と状態を設計する仕組み|MCP入門 2.1

MCP(Model Context Protocol)は、生成AIが一貫した出力を生むための文脈と状態を設計・再現するためのプロトコルです。本節ではMCPの定義、プロンプトとの違い、設計思想としての役割を丁寧に解説します。
2025-03-08

Model Context Protocol(MCP)とは何か?|MCP入門 第2章|生成AIの文脈設計の新常識

MCP(Model Context Protocol)とは、生成AIにおける文脈と状態を体系的に制御・再現するための設計原則です。本章ではMCPの定義、従来のプロンプト設計との違い、状態設計による一貫性の向上、実装例などをわかりやすく解説します。
2025-03-07

プロンプトとコンテクストの違いとは?|MCP入門 1.2|生成AIにおける役割と設計の考え方

生成AIを効果的に活用するには、Prompt(命令)とContext(文脈)を分けて設計する必要があります。MCP(Model Context Protocol)の基礎として、この2つの違いと役割、実装への考え方を詳しく解説します。
2025-03-04

RAGの回答精度を左右するコンテキスト整形とは?LLMへの最適な情報の渡し方|LLM入門 4.3

RAGにおいてRetrieverが抽出した情報をどのように整形し、LLMに渡すかは、出力の質に直結します。本記事では、プロンプト設計・チャンク構造・トークン最適化など、回答品質を高めるための整形技術を詳しく解説します。
2025-02-19