LLM入門


合計 2 件の記事があります。 現在 1 ページ中の 1 ページ目です。

6.1 データセットの前処理 - トレーニングデータのクリーニングと最適化方法

LLM(大規模言語モデル)のトレーニングに使用されるデータセットの前処理手法を解説します。データのクリーニング、トークン化、バイアス軽減、サンプリングなど、効果的な学習のためのプロセスを紹介します。
2024-10-17

1.2 確率論の基本と対話生成|LLMの次単語予測を学ぶ

LMは対話を“一単語ずつの確率予測”で生成します。本記事では「P(次の単語|文脈)」の考え方、自己回帰的生成、Top-kサンプリングやTemperature制御まで、確率論の基礎を対話例とともにわかりやすく解説します。
2024-10-04

チーム

任 弘毅

株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。

下田 昌平

開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。